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Abstract

This paper revisits the value of cache in DRAM-PM hetero-
geneous memory file systems. The first contribution is a
comprehensive analysis of the existing file systems on het-
erogeneous memory, including cache-based and DAX-based
(direct access). We find that the DRAM cache still plays an im-
portant role in heterogeneous memory. The second contribu-
tion is a cache framework for heterogeneous memory, called
FLAC. FLAC integrates the cache with the virtual memory
management and proposes two technologies of zero-copy
caching and parallel-optimized cache management, which
deliver the benefits of fast application-storage data trans-
fer and efficient DRAM-PM data synchronization/migration.
We further implement a library file system upon FLAC. Mi-
crobenchmarks show that FLAC provides a performance
increase of up to two orders of magnitude over existing file
systems in file read/write. With a real-world application,
FLAC achieves up to 77.4% and 89.3% better performance
than NOVA and EXT4, respectively.
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systems management; · Information systems → Stor-
age class memory.
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1 Introduction

New persistent memory techniques (e.g., 3DXPoint [12, 20]
and CXL-based SSD [15]) and connection techniques (e.g.,
CXL [4] and GenZ [5]) promise high performance, larger
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capacity, and energy efficiency. These bring a new trend
of heterogeneous memory architecture which consists of
a volatile memory layer (DRAM) and a persistent memory
layer (PM, it can be the 3DXPoint or emerging CXL-based
memory storage devices). This work investigates an impor-
tant question:What kind of storage framework canmaximize
the potential of heterogeneous memory? Currently, using
DRAM as cache and direct access (DAX) are two mainstream
solutions for heterogeneous memory file systems.
Caching pages in DRAM, such as VFS page cache, is a

common design in traditional file systems (e.g., EXT4 and
XFS) to bridge the performance gap between fast DRAM
and slow persistent storage devices (e.g., HDD and SSD).
However, many previous studies [8] in the past decade argue
that the DRAM cache incurs significant software overhead
under the fast, full-memory architecture. Therefore, most
existing systems (e.g., NOVA [31], SplitFS [17], ctFS [21], and
KucoFS [2]) resort to the DAX method, which bypasses the
DRAM cache and performs I/Os on PM directly.

However, DAX is still suboptimal for heterogeneous mem-
ory file systems. First, the DAX method potentially loses the
performance benefit of data locality provided by the DRAM
cache and incurs mandatory data copy across DRAM and
PM. Even worse, the performance upper bound of the DAX
is limited by the PM hardware which is inevitably slower
than DRAM. As we show in ğ2, the performance of DAX-
based systems is inferior to that of cache-based systems in
scenarios with high concurrency and strong data locality,
even though the VFS page cache framework introduces high
software overheads. Last but not least, instant persistence is
the best scene of DAX; but it is overkill in many real-world
scenarios [30].

Moreover, new characteristics in emerging hardware and
customer demand motivate us to revisit the value of DRAM
cache in heterogeneous memory architecture. 1) The per-
formance gap between PM and DRAM cannot be ignored,
and multiple PMs will have different performances in the
future (latency ranges from 170ns to 3000ns [14, 15]). 2)Data
locality exists in various real scenarios, and keeping the hot
data in DRAM can undoubtedly improve I/O performance.
3) Instant persistence in DAX is overkill in many real-world
scenarios [30].

While the DRAM cache still plays an important role in the
future heterogeneous memory architecture, simply reusing
the current implementation, such as the VFS page cache,
is insufficient. According to our quantitative analysis (ğ2),
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we conclude two challenges of building an efficient cache
framework on heterogeneous memory:

1) Reduce the data transfer overhead between application
buffer and cache. Transferring data between the application
and cache is the most critical fast-path operation, but ex-
isting cache frameworks use memory copy that introduces
substantial performance overhead. Our experiments show
that data copying occupies up to 84% of the overhead in the
file system with the VFS page cache.

2) Reduce the impact of the łcache taxž. In addition to
data transfer, existing cache frameworks spend lots of ef-
fort to synchronize (flushing dirty data) and migrate data
(evicting data into/out of cache) across DRAM cache and PM.
Currently, these operations are implemented in a synchro-
nous and serial way and significantly increase performance
penalty (more than 30%). For instance, upon a cache miss,
current systems block I/O operation and fetch data from
lower-level storage synchronously.
This paper proposes FLAC (FLAt Cache), a novel cache

framework for heterogeneousmemory. The key idea of FLAC
is to integrate the cache with the virtual memory manage-
ment subsystem. FLAC provides a single-level view of het-
erogeneous memory and enables a transparent and efficient
DRAM cache in the data I/O path. FLAC leverages two novel
techniques to deal with the two challenges outlined above:

1) Zero-CopyCaching. FLAC proposes the heterogeneous
page table that unifies heterogeneous memory into a single
level. Virtual pages within FLAC can be dynamically mapped
to physical pages on DRAM or PM according to their states
(i.e. cached or evicted). We then design the page attaching
mechanism, a set of tightly coupled management operations
on the heterogeneous page table, which optimize the data
transfer between applications and cache in a zero-copy man-
ner. The core idea of page attaching is to map pages between
source and destination addresseswith enforced copy onwrite
(COW). As a result, data read/write to/from FLAC is executed
by page attaching to realize efficient and safe data transfer.
While page remapping optimizations are also used in some
systems to reduce the overhead of data copy [7, 10, 24, 25], us-
ing a similar idea in the file system cache faces some unique
challenges that will be discussed in ğ3.1.

2) Parallel-Optimized Cache Management. The cache
management mechanism of FLAC must ensure a low łcache
taxž impact. Leveraging the multi-version feature that is
brought by the zero-copy caching, FLAC can fully exploit
the parallelism of data synchronization and migration with
critical I/O paths. FLAC proposes a 2-Phase flushing mech-
anism that allows the expensive persistence phase in dirty
data synchronization to be lock-free, and proposes asyn-
chronous cache miss handling to amortize the overhead of
loading data to cache in the background.

Furthermore, we leverage FLAC to implement a prototype
of file system read and write operations. The evaluation
shows that FLAC provides a maximum performance increase
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Figure 1. Traditional Cache vs. DAX (Lower is better). ł-f/-
nfž: with/without background flushing; ł-ccž: cold cache.

of more than an order of magnitude over existing systems.
With a command line application (tar), FLAC outperforms
NOVA and EXT4 by up to 77.4% and 89.3%, respectively.

2 Cache? or DAX?

With the emergence of new interconnection technologies
(e.g., CXL [4], GenZ [5]) and persistent storage medias (e.g.,
3DXPoint [12], CXL-based PM/SSD [15]), the storage ar-
chitecture evolves from memory-block to all-memory. A
typical heterogeneous memory architecture consists of a
fast, volatile, small capacity layer (DRAM), and a slow, non-
volatile, large capacity layer (PM). Different types of memo-
ries present heterogeneity in multiple aspects. The latency
of DRAM is about 80ns to 140ns, while the latency of low
tier memory ranges from 170ns to 3000ns [14, 15]. The PM
layer also has lower bandwidth and concurrency than the
DRAM layer [9, 17].
We deeply analyze the overhead of three typical file sys-

tems with cache (EXT4) and DAX (EXT4-DAX, NOVA) and
discuss the way to efficiently utilize heterogeneous memory.
We use a single test thread to randomly write/read a 10GB
file with 2MB I/O (the testbed is introduced in ğ5) and come
up with three observations from the experiments.

Observation 1: Existing DAX and cache frameworks are sub-
optimal, but DRAM cache still has great value for heteroge-
neous memory file systems.
The VFS page cache is a typical cache framework that

is designed to bridge the performance gap between DRAM
and block devices. However, the VFS page cache has a heavy
software stack, which makes it unsuitable for the heteroge-
neous memory structure. Therefore, many heterogeneous
memory file systems proposed in the past decade resort to
the DAX method, i.e., bypassing the DRAM cache in the data
I/O path. However, we think DRAM cache still has a lot of
value in heterogeneous memory file systems. First, PMs with
different performances will emerge in the future, and the
performance gap between PM and DRAM cannot be ignored.
Figure 1 and 3 show that VFS page cache still has better per-
formance than DAX in some cases (e.g., read and concurrent
write). Second, taking advantage of data locality is still the
main method of performance optimization. Third, POSIX is
still a mainstream semantics and it can tolerate cached I/Os,
which makes instant persistence in DAX an overkill in many
real-world scenarios [30].
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Figure 2.Architecture of FLAC. File data management is run
on top of FLAC. The file read/write operation is converted to
the zero-copy transfer API of FLAC. The pages are flushed
to/loaded from the PM by the parallel-optimized mechanism.

Observation 2: Data transfer overhead between the file system
and application buffer is significant but often overlooked, and
it is one of the keys to unlocking the potential of the cache in
heterogeneous memory.

File data I/Os (read/write) need to transfer data between
the application buffer and the storage system (i.e. cache or
persistent data area in DAX). Memory copy is the main-
streammethod to transfer data and it takes up more than 23%
and 96% of the total overhead in cache-based and DAX-based
file systems, respectively (Figure 1). Since the latency of PM
is much smaller than block devices, the performance bottle-
neck of data copy between cache and application is more
obvious. This observation leads us to consider a zero-copy
approach to transfer data between the cache and applica-
tion buffer. Thanks to the byte-addressability, it is feasible to
build a single-level address space of heterogeneous memory
to achieve zero-copy.

Observation 3: łCache Taxž in traditional cache frameworks
is heavy, and it mainly includes the overhead of data synchro-
nization and migration.
Caching increases storage levels and brings extra data

management overhead. Figure 1 shows that the łcache taxž
(denoted as łotherž) takes up to 77% of the execution time
in EXT4. Furthermore, the experiments reveal the composi-
tion of the łcache taxž. The background dirty flushing (data
synchronization) and cache miss (data migration) lead to
37% and 65% performance declines, respectively. In general,
the łcache taxž is difficult to eliminate, but we can reduce its
impact on the critical I/O paths by improving the parallelism
between them and front-end I/Os.

3 Flat Cache

We propose FLAC, a FLAt Cache framework integrated with
the virtual memory subsystem to deeply explore the potential
of cache in heterogeneous memory. FLAC is designed for
any heterogeneous memory architecture, while persistent
memory can be existing (e.g., 3DXPoint) or future (e.g., CXL-
based PM/SSD) devices.

Table 1.Main APIs of FLAC (for file system developer)

API Main Para. Description

init_flac pm_path
Create/Recover

the FLAC space

zcopy_from_flac

zcopy_to_flac

from_addr

to_addr

size

Transfer data between

application buffer

and FLAC with the

zero-copy approach

pflush_add

pflush_handle

addr

size

Attach (map) pages to a

flushing buffer and

add to the handle

pflush_commit pflush_handle
Atomically flush

dirty pages to PM

pfree
addr

size

Atomically reclaim

PM pages

As shown in Figure 2, FLAC maintains a range of con-
tiguous virtual memory addresses, called FLAC space, which
is as large as the available PM space used to store file data.
FLAC space is indexed by the heterogeneous page table and
it makes the physical location of the page transparent and
exposes a single-level memory space to file system develop-
ers. Pages are cached in DRAM when they are accessed (the
cache size can be adjusted). Data are transferred between the
application and FLAC space with the zero-copy approach
(ğ3.1) and synchronized/migrated between DRAM and PM
with the parallel-optimized mechanism (ğ3.2).

FLAC is a development framework for heterogeneous
memory architecture that allows the file system developers
to customize the data management (e.g., read/write logic) on
FLAC space. The other modules of the file system (e.g., meta-
data management) are independent of FLAC and they can be
flexibly implemented. Table 1 shows the APIs of FLAC. The
file system developers initialize FLAC by calling init_flac,
which creates FLAC space and binds the PM to it. The file sys-
tem internally uses zcopy_to/from_flac to transfer data
and support read and write operations. Data accesses on
FLAC space are transparent to applications, so applications
use standard read and write operations to access files. The
file system developers are asked to explicitly flush dirty data
from DRAM to PM, which gives them the flexibility to cus-
tomize flushing policies. A pair of APIs, pflush_add and
pflush_commit, provide a high concurrency and atomic
manner to flush data. At the same time, FLAC space can be
atomically reclaimed by calling pfree.

3.1 Zero-Copy Caching

Heterogeneous page table. As Figure 2 shows, FLAC uses
the heterogeneous page table, a customized sub-level table
(e.g., one or multiple PUDs) of the kernel page table, to main-
tain FLAC space. The heterogeneity of the page table has two
meanings. 1) Page table entries (PTEs) belonging to the page
table are replicated in PM for fault recovery. 2) The address
indexed in the page table is dynamically mapped to DRAM
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or PM as the page is cached or evicted, and a bit in the PTE is
used to indicate the location of the page. The heterogeneous
page table unifies the page indexes of cache and persistent
storage and simplifies cache access and management.

Page attaching. The core technique of optimizing the data
transfer in FLAC is a new mechanism for virtual memory
management ś page attaching. Given a piece of data, the
page attaching maps its source address (in either DRAM
cache or PM) to the destination address in the application
buffer without copying the data. Page attaching allows users
to set permissions (e.g., read-only) on source and destination
addresses after remapping. Read/write operations can then
be implemented using page attach between the cache and
application buffer without copying. FLAC guarantees secure
data mapping and sharing under concurrent accesses by
enforcing read-only mapping and copy-on-write (COW).

In contrast to existingworks that utilize page remapping to
realize zero-copy, as far as we know, FLAC is the first work to
use attaching to optimize data transfer between application
and file system cache. Furthermore, there are some unique
challenges in the file system cache to employ page remapping.
First, the remapping-based data transfer makes the page
have multiple versions, which needs to work with a new
cache management mechanism to ensure data consistency
and high concurrency (detailed in ğ3.2). Second, FLAC uses
COW page fault to ensure security and isolation when pages
are attached from/to FLAC space, which may bring extra
overhead in some workloads. Third, zero-copy introduces
the limitation of page alignment, which may reduce the
applicability of the file system implemented based on FLAC.
The second and third challenges are discussed in ğ6.

3.2 Parallel-Optimized Cache Management

FLAC requires a cache management mechanism for its multi-
version feature, while ensuring low łcache taxž impact. Exist-
ing cache frameworks execute cache flushing and cache miss
handling with large synchronization overhead: Cache flush-
ing locks the dirty pages until they are completely flushed,
which blocks the foreground writes and reduces the perfor-
mance; cache miss handling blocks the foreground I/O until
the pages are loaded to DRAM cache. The multi-version fea-
ture and the heterogeneous page table design of FLAC give
us an opportunity to fully exploit the parallelism of these op-
erations with critical I/O paths. Figure 2 shows the examples
of cache flushing and cache miss handling in FLAC.

2-Phase flushing. FLAC splits the dirty pages flushing into
two phases: collection phase (pflush_add) and persistence
phase (pflush_commit). The collection phase allocates a
fresh VA area as a temporary flush buffer and attaches the
dirty pages to it. This phase requires a lock to prevent concur-
rent writes from modifying the mapping. Then, the persis-
tence phase stores the dirty pages to PM, which is lock-free
since there are no concurrent accesses to the temporary

buffer. Because the page mapping in the collection phase
is much faster than cross-memory copy, FLAC significantly
reduces the blocking time on foreground writes. In addition,
the persistence phase is atomic ś the consistency of pages
and persistent PTEs are protected by log-structured flushing
and logging, respectively.

Asynchronous cache miss handling. Cache miss has less
impact on write operation because it does not require pages
to be loaded into the cache (except in the case of page mis-
alignment). Benefiting from the heterogeneous page table,
FLAC can directly attach the PM pages to the read buffer
(and returns immediately) and handle the cache miss asyn-
chronously. A background thread in FLAC is responsible for
loading the cache missed pages to DRAM and remapping
page tables pointing to those PM pages to the cached pages
on DRAM. As a result, the overhead of handling cache misses
can be amortized in the background.

4 Case Study: File Read/Write on FLAC

We introduce a simple library file system based on FLAC to
show its usage and benefits. As FLAC focuses on optimizing
data I/O, the prototype only implements read/write and a
few necessary metadata operations (e.g., open and close).

Architecture. File data are stored in the FLAC space to
get benefits from the flat cache design, while metadata are
stored in the hash table on the normal shared memory space.
The inode table is stored on both the DRAM and PM. The
prototype borrows the page index design from ctFS [21], i.e.,
it allocates a segment of consecutive VAs (virtual memory
address) on FLAC space for each file, and the start VA and
size of the file are recorded in the corresponding metadata.

Read and Write. The read/write interface is similar
to that in the traditional POSIX file. The main parameters
include file handle, file offset, access length, and read/write
buffer provided by the application. Currently, our prototype
assumes that the file offset and read/write buffer are 4KB
page aligned (the applicability is discussed in ğ6). After open-
ing the file, read/write gets the start VA on FLAC space
from the file’s metadata and performs zcopy_from_flac
(read) / zcopy_to_flac (write) to transfer data. In addition,
the file system launches a background thread to periodically
flush the dirty pages to PM by using the 2-Phase flushing
mechanism (by calling pflush_add and pflush_commit).

Compared to Related Works. FLAC allows file systems
based on it to benefit from the DRAM cache while reducing
the effects of łcache taxž as much as possible We compare
FLAC to a wide range of existing works (shown in Table 2).

vs. Cache-based File Systems/mmap. There are many
file systems designed based on VFS. Although VFS page
cache can improve the performance in some scenarios in
heterogeneous memory file systems, these systems suffer
from heavy łcache taxž and fail to optimize the application-
FS data transfer. In addition, some existing works optimize
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Table 2. Comparison with Related Works

Type Typical System
Data

Cache

Low/Non Cache

Tax Impact

App-Storage

Zero-Copy

App-Storage

Decouple

Cache-based FS VFS page cache FSes (ETX4, SPFS [30], etc.) " % % "

Cache-based mmap mmap in VFS page cache FSes (EXT4, etc.) " % " %

DAX-based FS
NOVA [31], Strata [19], SplitFS [17], WineFS [16], ctFS [21],

KucoFS [2], PMFS [8], libnvmmio [3], EXT4-DAX [6], XFS-DAX, HTMFS [32]
% " % "

DAX-based Runtime
Twizzler [1], Mnemosyne [28], PMDK [13]

zIO [27], SubZero [18]
% " " %

Flat Cache FLAC-based FS " " " "

DRAM page cache [22, 23] for PM, but they are built on top
of the virtual memory subsystem and therefore fail to exploit
the full potential of cache. Although some cache-based file
systems also provide the mmap method to avoid the data
transfer overhead, it makes application design and storage
backend to be coupled, which is complementary to the file
semantics.

vs. DAX-based File Systems. DAX-based file systems by-
pass the DRAM cache in data I/O, making them suffer from
high application-storage transfer overhead. Also, the latency
and concurrency of PM hardware greatly limit their per-
formance. In particular, some DAX-based file systems also
use remapping: SplitFS [17] proposes relink, an operation
to atomically move a contiguous extent from one file to an-
other, which is used to accelerate appends and atomic data
operations; ctFS [21] proposes pswap to swap the page map-
ping of two same-sized contiguous virtual addresses, which
is used to reduce the overhead of maintaining file data in
contiguous virtual addresses. However, neither SplitFS nor
ctFS uses remapping to optimize data copying between appli-
cations and file systems, and FLAC optimizes this part with
the zero-copy caching technique.

vs. DAX-based Runtime. This type of work usually pro-
vides a memory management library or programming frame-
work for applications. Although the overhead of data transfer
between the application and storage system can be avoided,
they require the application to be co-designed with the stor-
age backend (e.g., use customized interfaces or object ab-
straction). Some of these works provide zero-copy PM I/O
libraries [18, 27]. However, they require applications to allo-
cate read/write buffers on PM to avoid data copy, and thus
force to ship the data processing from DRAM to PM, which
is not friendly for some cases [29]. DAX-based runtime fo-
cuses on programming directly on PM and can be seen as
complementary to the file system.

5 Preliminary Results

We compare the read/write performance in FLAC with
cache-based (FLAC and EXT4) and DAX-based (EXT4-DAX
and NOVA) file systems. FLAC and EXT4 are run on a hot
cache. The period of background flushing is 10ms in FLAC

while it is 100ms in EXT4. The experiments are run on a

server with two Intel Xeon Platinum 8380 CPU @ 2.30GHz,
256GB RAM, and 1TB (128GB×8) Intel 3DXPoint DCPMM.
Porting FLAC to more complicated applications and com-
paring with more recent file systems, such as ctFS [21], are
ongoing work.

Microbenchmark. The benchmark uses 2MB I/O to con-
currently and randomly write/read 64GB data on 64 non-
empty files (1GB per file), and no data contention in the
experiments. As Figure 3 (a) and (b) show, FLAC outper-
forms other tested systems by more than 25.9 times and 13.7
times in write and read, respectively. The zero-copy design
of FLAC contributes to the main performance gain. In addi-
tion, data copy during background flushing does not block
foreground writes, which significantly reduces the impact
of background flushing on performance in write-intensive
scenarios.

Real-WorldApplication.We port tar (v1.34) to FLAC, a
commonly used archiving application. Its main process reads
the input file, archives it, and writes the data to an output
file. The tar contains little computation and represents an
I/O-intensive case. Figure 3 (c) plots the execution time of
archiving a file with increasing file size. On average, FLAC
improves NOVA, EXT4, and EXT4-DAX by 48.5%, 54%, and
41.2%, respectively.

6 Discussion and Future Work

Although FLAC promises attractive performance improve-
ment in data I/Os, it still leaves some limitations and open
challenges for our feature work.

1) Reduce COWpage fault overhead.Data transfer be-
tween FLAC space and application buffer is implemented by
page attaching. After attaching, the source and destination
memory are set to read-only for security, which makes the
first store instruction to the source (write case) and desti-
nation (read case) memory after attaching to trigger a COW
page fault. Our analysis shows that TLB flushing and data
copy are two of the main overheads in the COW page fault.
We have two ideas to reduce the COW page fault overhead:
The first idea is to flush TLB in batch (the default is once
per page). The second idea is to provide a new interface that
allows the application to detach the original page mappings,
thus completely avoiding COW page fault.
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Figure 3.Microbenchmark and Application Performance (Lower is better).

2) Improve the applicability. Zero-copy (page attach-
ing) can be performed only when the application buffer and
the target memory in FLAC are aligned. Currently, FLAC
asks applications to perform file accesses following this rule.
For example, one way to adapt an application to FLAC is
to ensure that the read/write buffer and target file offset
are 4KB page aligned. To improve the applicability of FLAC,
a possible solution is to provide a customized buffer man-
agement mechanism for applications. It allocates a buffer
larger (and aligned) than the required the file I/O size and
always perform file access as page aligned. In this way, the
buffer may contain more data than the application needs, so
the mechanism maintains a sliding window to represent the
valid data in the buffer, and the application calls an explicit
interface to move the window after each file I/O.

3) FLAC-optimized cache policy. FLAC permits more
powerful cache policies for heterogeneous memory. First,
because FLAC is embedded in the VM subsystem, it can be
aware of more memory access behavior about the applica-
tions (e.g., allocation/free, reference count), which makes
it possible for FLAC to make better caching decisions. Sec-
ond, the lower layer of heterogeneous memory is fast and
byte-addressable, thus FLAC can investigate more trade-offs
between data locality and miss ratio. In future work, we aim
to collaborate these new insights brought by FLAC with tra-
ditional hotness-based methods to design an efficient cache
policy.

4) Ensure security. For data security, FLAC is imple-
mented in the kernel, and userspace applications can use
it only through syscalls. Pages are always mapped to the
application as read-only, which ensures that local operations
of the application do not affect the data in the cache and
other applications as they are handled by COW page fault.
Implementing a storage system on top of FLAC brings se-
curity considerations for metadata, which can be solved by
using the userspace security mechanisms (e.g., MPK [11, 26])
or putting metadata management in the kernel.

5) Ensure crash consistency. FLAC ensures that data
modification operations (pflush_commit and pfree) are
atomic. However, along with flushing the data, the file sys-
tem upon FLAC may need to update the related FS-level

metadata (e.g., page index) on PM. We plan to design a FS-
FLAC collaboration logging mechanism, which ensures that
data flushing and FS-level metadata updates are in a trans-
action. The basic idea is to allow the file system to provide
the updated FS-level metadata to FLAC, and they are logged
with updated FLAC-level metadata in the same entry during
data modification operations. The file system is also required
to overload the FS-level recovery function that FLAC calls
to commit the FS-level metadata log during recovery.

6) Space overhead. Compared to traditional page cache,
the multi-version design of FLAC does not incur additional
space overhead. In FLAC, the new version of the page is
created in the application runtime by COW page fault, so the
new version does not take up space in the page cache before it
is overwritten to FLAC. After overwriting, the virtual address
in the FLAC space is mapped to the new version, and the
old version is reclaimed. Furthermore, the zero-copy caching
design naturally brings the deduplication benefit in some
cases (e.g., the application reuses the write buffer and only
a small number of pages have been modified). We plan to
leverage this advantage to improve the space efficiency of
the DRAM cache and PM.

7 Conclusion

Heterogeneous memory requires innovations of effective
software architecture to maximize its potential of various
advantages. We analyze the shortcomings of existing cache-
based and DAX-based file systems, and conclude that DRAM
cache still has great potential in fast all-memory architec-
tures. We propose FLAC, a flat cache framework for hetero-
geneous memory that embeds the cache into virtual memory
management. FLAC unlocks the potential of cache through
two new techniques: zero-copy caching and parallel-optimized
cache management. We implement a file system prototype
based on FLAC and show that FLAC has significantly better
performance than existing cache and DAX solutions.
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