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Abstract

This paper examines the I/O bottlenecks in the container
image service. With a comprehensive analysis of existing so-
lutions, we reveal that they suffer from high I/O amplification
and excessive network traffic. Furthermore, we identify that
the root cause of these problems lies in the storage-oriented
and global-oriented container image abstraction. This work
proposes a memory-oriented and service-oriented image ab-
straction, called runtime image, which represents the memory
state of the root file system of the container service. The run-
time image enables efficient network transfer and fast root
file system construction. We design and implement FlacIO,
an I/O accelerator based on the runtime image for container
image service. FlacIO introduces an efficient runtime image
structure that works in conjunction with a runtime page cache
on a host node to achieve efficient image service. Our eval-
uation shows that FlacIO reduces the container cold startup
latency by up to 23 and 4.6 times compared to existing full
image and lazy loading solutions, respectively. In real-world
applications, FlacIO achieves up to 2.25 and 1.7 times perfor-
mance speedup over other systems in the object storage and
machine learning training scenarios, respectively.

1 Introduction

Container technology has been widely deployed in cloud
scenarios, such as elastic computing, dynamic service expan-
sion, and disaster recovery, due to its lightweight and easy
deployment advantages. The quality of the container image
service is an important indicator of cloud products. Container
cold startup refers to the process of loading the image from
the registry node to the host node and starting the service.
However, the inherent cold startup solution is to load the full
image to the host node, which can cause unacceptable latency,
especially for large container images [15, 18].

The key bottleneck of full image loading is the severe I/O
amplification, which can reach up to dozens of times the data
required for container startup according to our experiments
and other related works [3,31,40]. There are two complemen-
tary technical routes to alleviate this bottleneck. The first route
is to accelerate the image loading process. Lazy loading is the
mainstream solution in this route, which allows containers
to be started immediately after obtaining image metadata but
load data on demand while running. Lazy loading is widely
used in the production environment of cloud vendors. Typical
systems include CRFS [14], Nydus [25], and DADI [18]. The

second route is to migrate the cold startup out of the critical
path of service launching. Typical solutions use caching/shar-
ing [2, 11, 20, 21, 26], forking [8, 29, 36], and P2P loading [7]
to launch the target container from the local/other host node.

The optimizations mentioned above do not completely
solve the cold startup problem. The mitigation-based op-
timizations need to consume the hardware resources (e.g.,
DRAM, network) on the host nodes, and the limited resources
make a certain proportion of containers still need to be cold
started under real-world workloads [31].

However, the acceleration-based optimizations, i.e., lazy
loading, are suboptimal. According to our quantitative anal-
ysis, although existing lazy loading solutions avoid the high
latency of pulling full images, they incur high network over-
head during the on-demand loading phase (up to 90% of
the total overhead). Furthermore, our analysis concludes that
the network overhead is mainly due to two reasons: 1) High
I/O amplification (up to 3.1 times) caused by the mismatch
between the access and on-demand loading granularity. 2)
Massive network traffic (hundreds of thousands of packets)
caused by random access behavior on image data.

Motivation. This work aims to propose an optimization that
stacks on the lazy loading systems to tackle their bottlenecks.
We find that traditional image abstraction based on Storage-

Oriented (i.e., recording the disk state) and Global-Oriented

(i.e., one image for multiple services) is the root cause of
inefficient lazy loading. This makes the I/Os of image data
loading difficult to be optimized. The main work of lazy
loading can be considered as creating the root file system for
the container startup. Because the data required for the same
container service to start is deterministic, our motivation is to
use a new image abstraction based on Memory-Oriented (i.e.,
recording the memory state) and Service-Oriented (i.e., one
image for one service) for container’s root file system, called
Runtime Image, to significantly reduce the amount of network
I/Os and data required for root file system construction.

Challenges. Optimizing lazy loading based on runtime im-
age is non-trivial, and it encounters two challenges. First, the
organization of runtime image needs to be carefully designed,
taking into account the loading efficiency, space overhead,
and container ecosystem compatibility. Second, an I/O stack
for runtime image needs to be designed to support the root
file system built from the runtime image while remaining
lightweight. This paper designs FlacIO (FLAt and Collective
I/O), an I/O accelerator to enable runtime image in main-
stream lazy loading systems. It includes two key designs:
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1) Runtime Image. FlacIO allows container users to create
and manage runtime images for specified container services
from the base (original) image through a simple set of APIs.
For runtime image creation, FlacIO starts the container and
uses probe-based I/O tracing to accurately collect I/O on the
root file system, which is then sent to the registry node for
asynchronous runtime image generation. In the runtime im-
age, related data in the I/O trace is extracted from the base
image, deduplicated, and stored in continuous space, where
the data is indexed by the file index and page tables built
into the runtime image. During cold startup, FlacIO detects
whether to use runtime image (if any) or roll back to lazy load-
ing. By this design, runtime image loading is only charged a
few small I/Os and a large I/O to obtain the image description
and image data, respectively, which significantly improves
network efficiency during cold startup.

2) Runtime Page Cache (RTPC). FlacIO proposes RTPC,
a specific page cache in the kernel of the host node to allow
building the root file system based on the runtime image.
The RTPC is embedded into the OverlayFS [28] and stacked
on the traditional VFS page cache. It provides a set of new
OS primitives for the container platform to build the root
file system, which only needs to inject (copy) the runtime
image into the kernel and mount the root file system on it.
Because runtime images are based on services, RTPC supports
incremental loading and injection of runtime images created
from the same base image. When a root file system is mounted
to the RTPC, the file access is directly processed by the RTPC
if the target data is hit in it. Otherwise, the access is redirected
to the native VFS. As a result, RTPC ensures a lightweight
root file system creation and efficient memory usage.

We implement FlacIO and adapt it to two popular lazy
loading systems, CRFS [14] and Nydus [25]. Our evaluation
shows that FlacIO reduces the cold startup latency by up to
4.7 times in a variety of typical container services, compared
to the state-of-the-art lazy loading systems. With real-world
applications, FlacIO achieves up to 2.25 and 1.7 times perfor-
mance improvement over other tested systems in the object
storage and ML training scenarios, respectively. In a cluster-
wide container auto-scaling scenario, FlacIO delivers up to
55% faster scaling than existing solutions.

The contributions of this paper include:
• It quantitatively analyses the I/O bottleneck in container

image services and observes that the bottleneck is caused
by frequent small network I/Os and complicated I/O stack.

• It proposes a new image abstraction accompanied by an
end-to-end solution, including the techniques of runtime
image organization/management and runtime page cache.

• It adapts FlacIO to the mainstream container image service
solutions (CRFS and Nydus) and demonstrates the benefits
via micro benchmarks and real-world applications.
The rest of this paper is organized as follows: Section 2

and Section 3 introduces the background and motivation;
Section 4 presents the key designs and implementation of

FlacIO; Section 5 shows the detailed evaluation of FlacIO;
Section 6 concludes the paper.

2 Background

2.1 Container Image Service

Container technology has become the infrastructure for large-
scale distributed scenarios. As an important part, the image
service has a significant impact on the overall performance. In
the production environment, the storage stack of the container
image service consists of two components: a remote registry
for storing and managing images, and a storage driver on
the host node for pulling the image and mounting the root
file system of the container. A container image consists of
multiple read-only layers at the bottom and a writable layer at
the top. The storage driver uses the OverlayFS [28] to stack
the files in the image and present the namespace of the root
file system for the container.

Cold startup is the process of pulling the image from the
remote registry over the network and launching the container
service on the host node. Loading the full image to the host
node is a native solution for cold startup. However, the full
image loading subjects to long latency and low network band-
width utilization because only a small amount of data in the
image needs to be used during container service startup [15].
Currently, there are two complementary optimizations for
inefficient full image loading:

1) Cold Startup Acceleration. Lazy loading is the main-
stream mechanism to accelerate container cold startup, which
has been widely used in production environments. Inspired
by the fact that only a small part of the image data is required
for container startup, lazy loading allows containers to be
launched only after image metadata is loaded, and image data
is loaded on demand during container running. CRFS [14]
is a FUSE [32] file system that introduces an image format
called stargz [10] to support lazy loading at the file granular-
ity; Nydus [25] treats all layers of the image as an independent
EROFS [12] and leverages FS-Cache [1] to support lazy load-
ing at the chunk (e.g., 64KB) granularity; DADI [18] proposes
a block-level lazy loading solution by using the overlayered
iSCSI block device; Slacker [15] maps image layers to the
snapshots of remote storage (e.g., Ceph [37], VMstore [13])
for lazy loading.

However, image data miss during container running will
trigger I/O and block container services. Some lazy loading
systems use prefetching to reduce the impact of this prob-
lem to some extent, i.e., loading high-priority data before
the container is launched. For example, CRFS [14] allows
users to manually prioritize files during image creation for
prefetching; DADI [18] uses blktrace to record the block
I/Os during container startup on its customized virtual block
device and uses FIO to prefetch data.

2) Cold Startup Mitigation. Orthogonally to cold startup
acceleration, some works resort to the migration-based ap-
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proach, which aims at reducing the frequency of cold startups.
These works can be divided into several types: Caching/Shar-
ing – FaaSCache [11], SEUSS [2], and FlashCube [21] keep
hot containers alive to exploit locality; SOCK [26] and Pagu-
rus [20] allow multiple services to share idle containers to
simplify container startup; RainbowCake [38] combines the
caching and sharing solutions to use their respective advan-
tages; FaaSNet [34] provisions serverless function containers
in a decentralised and scalable manner. Fork – Catalyzer [8]
and Mitosis [36] resort to the customized fork mechanisms to
start containers from other related processes. P2P Loading –
Dragonfly [7] allows loading images from adjacent host nodes
to avoid accessing the slow registry.

Cold Startup Bottleneck. The efficiency of cold startup can
significantly affect the overall performance of container-based
productions. For example, the long cold start latency (minute-
level) of AI containers affects the QoS guarantee in our cloud
product; The slow cold startup causes the long tail latency
challenge in the serverless platforms of public clouds [31,35].
However, neither the acceleration-based nor migration-based
solutions effectively solve the cold startup bottleneck.

On the one hand, existing acceleration-based solutions are
suboptimal. The native lazy loading suffers from high net-
work overhead. Even if the prefetching optimizations are
used, they simply replay the I/Os, which only changes the
I/O priority without significant relieving network traffic. On
the other hand, existing mitigation-based solutions are not
applicable to all scenarios. First, they occupy resources of the
host cluster (e.g., memory and network), which may cause
unpredictable performance jitter of online services in the
resource-starved scenario. Second, they struggle with security
in multi-tenant environments. To this end, this work focuses
on the acceleration-based solution, but it is complementary to
existing migration-based optimizations.

2.2 Lazy Loading

Flow (a) and (b) in Figure 1 show the I/O paths for file-level
and block-level lazy loading, respectively. Consider the file-
level solution, which contains two core components:

OverlayFS. The root file system is built upon the Over-
layFS [28]. It is stacked on the local file system and contains
four layers: the lower layer stores read-only files and direc-
tories of the container image; the upper layer stores modifi-
cations to the lower layer; the work layer temporarily stores
intermediate states of file system operations; the merge layer
integrates the upper and lower layers to provide the container
with a unified view of the file system. All file accesses on
the root file system are redirected to the underlying local file
system by the OverlayFS.

Loading Module. When the page to be accessed is missed,
the local file system notifies (by FUSE or FS-Cache) the lazy
loading module to load data from the registry node. To reduce
network overhead, existing solutions prefetch data to the lazy
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Figure 1: Architecture Comparison. File-level and block-level lazy
loading solutions fetch image data on demand, which suffers from
high network overhead and complex I/O path. FlacIO provides a fast
path stacked on lazy loading mechanism.

loading (perfetch) cache and then populate the VFS page
cache of the local file system with missing pages.

The basic mechanism of the block-level solution (DADI) is
the same as that of the file-level solution. The main difference
is that the overlay feature and the prefetch cache is built at
the block layer. This design allows the root file system to be
built on top of any local file system.

The container cold startup can be divided into three stages:
1) Deploy stage obtains the metadata and data required for
building the container runtime from the registry; 2) Running

stage creates the container runtime (e.g., cgroup) in the host
node; 3) Ready stage launches the service and executes the en-
trypoint in the container. The container can provide services
normally after these three stages are performed. Five systems
covering three different technical routes are used for our anal-
ysis, including full image loading, lazy loading (CRFS [14],
Nydus [25], DADI [19]), and lazy loading with prefetching
(DADI-Trace [6]). We start the Pytorch container in cold and
use import torch as the entrypoint in the experiment. The
host and the registry of the testbed run on two nodes, which
are interconnected through a TCP/IP network. There are two
important observations that are found from the experiment:

Observation 1: Existing lazy loading solutions reduce the

latency of the “Deploy” stage, but they surfer from high over-

head in the “Ready” stage.

This observation is reflected in the “Latency Breakdown”
column in Table 1. Using the full image loading as the base-
line, the lazy loading solutions (CRFS, Nydus, DADI(-Trace))
shorten the latency of the “Deploy” stage by more than 98%,
but increase the latency of the “Ready” stage by more than 9
times. This is because lazy loading offloads heavy I/Os when
the container executes its entrypoint (i.e., import torch in
this case). The core benefit of lazy loading comes from reduc-
ing the amount of data loaded, which results in about 80%
reduction in the total cold startup latency compared to the full
image loading. This observation reveals the focus of lazy load-
ing optimization, i.e., inefficient I/Os in the “Ready” stage.
Compared with the existing lazy loading solution, FlacIO re-
duces the latency of the “Ready” stage by more than 70%
while ensuring the low overhead of the other stages.
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Table 1: Performance Breakdown of Container Cold Startup.

Latency Breakdown I/O Behavior
Solution

Deploy Running Ready Total I/O Amp. Net. Pkg.

Full Image 124.6s 1.6s 1.7s 127.9s 47.5X 573K
CRFS 1.8s 1.2s 24.1s 27.1s 1.8X 99K
Nydus 0.8s 2.9s 21.4s 25.1s 1.6X 90K
DADI 0.6s 2.6s 17.0s 20.2s 3.1X 171K

DADI-Trace 0.7s 2.2s 17.1s 20.0s 3.0X 166K

Observation 2: Severe I/O amplification and inefficient net-

work accesses are the main performance bottlenecks of con-

tainer cold startup.

This observation is reflected in the “I/O Behavior” column
in Table 1. On the one hand, although existing lazy loading
solutions significantly reduce the I/O amplification compared
to the full image loading solution due to the on-demand load-
ing, they still suffer from 1.6 to 3.1 times I/O amplification at
the page level. The main reason is that they use a relatively
large loading granularity (e.g., file, chunk), but the locality
of the image data at startup is not strong. On the other hand,
existing lazy loading solutions trigger a large amount of ran-
dom access to the remote image data in the “Ready” stage,
resulting in low utilization of network resources (hundreds of
thousands of packets are required for each cold startup). In
addition, I/O amplification wastes network bandwidth.

The combination of low I/O amplification and efficient net-
work accesses is a dilemma for existing lazy loading solutions
– smaller on-demand loading granularity reduces I/O amplifi-
cation but increases network load, and vice versa. Prefetching
high-priority data is a way to alleviate this contradiction, but
it is still suboptimal. In the tested systems in Table 1, CRFS
prefetches the full image in the background, while DADI-
Trace prefetches the data in the block I/O trace of historical
the cold startup. However, experimental results show that
these methods do not solve the problem well because they do
not aggregate I/O efficiently and do not prefetch accurately.
For example, DADI-Trace cannot precisely set the trace win-
dow and simply uses I/O replay to prefetch. In contrast, FlacIO

only takes 1.1 times amplification and 22K network packets
in this experiment.

3 Motivation: A New Image Abstraction

The main goal of lazy loading is to build the root file system
in the host node for the container. We argue that the traditional
image abstraction is a key factor in the inadequacy of lazy
loading described above, it is: Global Oriented – It holds a
complete set of files/namespaces required for running a cer-
tain type of services. However, each service uses only a small
portion of the full file data, and the requirements vary from
service to service. Storage Oriented – It records the disk lay-
out of the root file system, thus, lazy loading needs to map the
I/O to the disk layout, obtain data from the registry, and re-
build the local memory state (filling namespaces/indexes/data)
before being used by the container.

This abstraction brings many problems in the container
cold startup. 1) I/O is difficult to aggregate because the data
required during container startup is discretely distributed in
different locations across different image files. 2) I/O ampli-
fication is hard to eliminate because data is compressed and
stored in images, which makes the data difficult to index at
page granularity [39]. 3) I/O locality is difficult to optimize
because of the differences between services. 4) Lazy loading
requires complex I/O forwarding to load data and build the
memory state of the root file system.

The motivation of this work is to make the image abstrac-
tion to be Memory Oriented – recording the memory state
of the container, and Service Oriented – one image for one
service. To this end, we pre-build the memory state of the root
file system of the container service, called Runtime Image. It
delivers two advantages: First, it is efficient for network trans-
fer because it contains only the smallest set of data needed to
start the container and is beneficial to I/O aggregation. Sec-
ond, it can support fast root file system construction because
it contains a complete memory state.

As shown in Flow (c) in Figure 1, the runtime image is
stacked on the lazy loading mechanism and brings a fast path
to prepare the root file system through a flat and collective
approach. The general-purpose full-memory state checkpoint
(e.g., CRIU [5, 33]) cannot be used for the runtime image
because it is not co-designed with the container image service
and is applicable to limited scenarios (e.g., difficult to handle
different architecture/tenant/security scenarios). In contrast,
the runtime image is deeply integrated with the container
ecosystem, and it records only the memory state of the con-
tainer’s root file system, which is small and stateless. However,
runtime image design is a non-trivial work:

Challenge 1: How to organize the runtime image in an
efficient manner based on the new image abstraction? First, it
is required to accurately record the minimum set of metadata
and data required for a cold startup. Second, it must be com-
pact so as not to put a heavy burden on backend image storage.
Third, it has to be smoothly embedded into mainstream con-
tainer runtimes (e.g., Containerd [4]) and transparent to the
upper-layer systems and users. (§4.1)

Challenge 2: How to build a lightweight I/O stack on the
host node for the runtime image? On the one hand, the current
kernel does not support directly loading a definite memory
state for the container’s root file system, which requires new
OS primitives and cache mechanism. On the other hand, the
runtime image is stacked on a lazy loading mechanism, so
the new I/O stack needs to be compatible with the legacy
on-demand loading I/O stack. (§4.2)

4 FlacIO Design

This work proposes FlacIO (FLAt and Collective I/O), a
novel I/O solution for container image service. Figure 2 shows
the architecture of FlacIO. It includes four main components:
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Figure 2: Architecture of FlacIO. In runtime image creation, FlacIO

driver invokes the I/O tracker to collect container’s I/Os and sends
them to the runtime image service for asynchronous generation. In
cold startup, the driver pulls and injects the runtime image into the
RTPC. The root file system can be mounted on the runtime image.

1) The FlacIO driver is running in the container runtime (e.g.,
Containerd) to play the role of the control plane. 2) The I/O
tracker works in the VFS and collects I/O behavior during con-
tainer running. 3) The runtime page cache (RTPC) is imple-
mented in the OverlayFS, which provides new OS primitives
to allow containers to efficiently build root file systems using
runtime images. 4) The runtime image service is deployed in
the image registry to serve runtime image management (e.g.,
loading, offline generation).

APIs. A set of APIs are provided by FlacIO for the container
runtime and the container end-user (Table 2) to enable the
runtime image optimization in existing container ecosystems.
In terms of mechanism, FlacIO can adapt to any lazy loading
solution through minor engineering efforts.

Container End-User: The rt_create and rt_delete al-
low end-users to enable or disable the runtime image opti-
mization for a service as required. If a runtime image exists
for the container service, FlacIO will automatically start with
our fast way, otherwise, the startup process will fall back to
the traditional lazy loading mechanism.

Container Runtime: The mount -rt is a customized
mounting flag of the OverlayFS, and the container runtime
(e.g., Containerd) can bind the root file system to the runtime
image by setting the -rt flag with the container service ID.
The rt_diff and rt_inject are used to implement incre-
mental loading and efficient injection of runtime images.

Key Workflow. When the container end-user creates a run-
time image for the container service, the FlacIO driver starts
the container by the traditional lazy loading method and logs
its I/O behavior until the readiness probe condition is met.
Then, the I/O log is sent to the registry to generate the corre-
sponding runtime image offline. During the cold startup of a
container, the FlacIO driver checks whether the target runtime
image exists in the registry. If it does not exist, the container
is started using the traditional lazy loading method. If the
target runtime image exists, the FlacIO driver pulls it to the

Table 2: Main APIs of FlacIO

User API Parameter Description

Container

End-User

rt_create
image_name

entrypoint

probe

Create a runtime image for the
provided image and entrypoint,
and return the service_id

rt_delete service_id
Delete the runtime image related
to the service_id

Container

Runtime

mount -rt service_id
Build the root file system based
on the runtime image

rt_diff
service_id

dzone_bitmap

Compare the bitmaps and return
the diff_bitmap of the missing
page for incremental loading

rt_inject
service_id

diff_bitmap

rt_meta/data

Inject the metadata and data of
the runtime image into the target
runtime page cache

host node by incremental loading and injects it into the RTPC.
The container is then started in the traditional manner.

4.1 Runtime Image

The runtime image records the memory state of the root file
system when the container service is started. It contains the
minimum set of data needed to start the container and the
index of that data. Runtime image relies on two key designs:
1) A probe-based tracing mechanism is designed to accurately
collect the container’s I/O behaviors. 2) A sophisticated run-
time image structure is proposed to meet high network trans-
mission efficiency, low storage overhead, and high container
ecosystem compatibility.

4.1.1 Probe-based Container I/O Tracing

Runtime image is asked to record only the data required
for container service startup, but accurate tracing of the con-
tainer’s I/O behavior is not easy. To make an efficient runtime
image, the I/O tracker needs to address two challenges: First,
how to collect the minimum set of I/Os required for container
service startup? Second, how to accurately collect the I/O
requests of the target container? The container probe and
the file-level I/O tracker are designed to address these two
challenges, respectively.

Container Probe. The I/O behavior during container run-
ning is complex, and only part of the I/Os are used to start
the container service (e.g., loading necessary libraries). Fla-

cIO uses the probe-based method to enable the underlying
I/O tracker to detect the I/O behavior in the container. The
core principle is to stop I/O tracing when the probe captures
the corresponding event. Probes are classified into external
probes and internal probes. External probes detect container
status outside containers. FlacIO provides some default ex-
ternal probes, such as network port status detection. Corre-
spondingly, the internal probe runs in the container and is
an entrypoint, and FlacIO uses the internal probe to run the
container during I/O tracing. The user is required to specify
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the type and content of the probe (default probe/executable
external program/entrypoint) when calling rt_create.

For example, network services (e.g., Ngnix, Httpd) are suit-
able for default HTTP status probes, while framework services
(e.g., Pytorch) are suitable for internal probes (e.g., having the
probe load the necessary libraries). Compared with the static
tracing mechanism (manually set the duration) in DADI [18],
the probe-based solution can collect I/Os required for con-
tainer startup more accurately and flexibly.

File I/O Tracker. FlacIO traces I/Os at file-level rather than
block-level for two reasons. First, it is compatible with differ-
ent container platforms. Tracking I/Os in the root file system
is suitable for both file-level and block-level lazy loading sys-
tems, while tracking at the block layer depends on the specific
overlay block device. Second, file-level I/O tracing is more
accurate. The block layer and container I/O requests exhibit a
certain degree of discrepancy due to the I/O re-orchestration
of the file system.

The container uses image data through a file system call
(read) and memory mapping (mmap). The I/O tracker is de-
signed based on eBPF [9]. We add the eBPF points in the
entries of file read and page fault to ensure that I/O requests
are collected accurately and completely. The I/O tracker gener-
ates an I/O trace after tracing, which includes multiple triples
and each of them records the file path, offset, and size of the
I/O. The I/O trace is sent to the registry for asynchronous
generation of the runtime image.

4.1.2 Organization and Management

Runtime images are service-specific, which requires that Fla-

cIO uniquely represent the container service. The base (origi-
nal) image and the entrypoint can reflect the container envi-
ronment and the behavior of the service, respectively. FlacIO

generates a service ID based on the hash value of the base
image name and the entrypoint. However, a base image may
correspond to multiple services, and the I/Os required for
these services to start may be highly duplicated. To reduce the
footprint, we group the runtime images created on the same
base image. Figure 3 shows the organization of the runtime
image, and it includes three parts:

Group Metadata. It contains metadata that is global to all
runtime images (services) in the group. The runtime list is
used to index the runtime images through the service IDs.
To support data deduplication inside the group, a fingerprint
index is used to store the SHA256 value for each page in
the group and their location in the group data zone. It also
contains an allocator for managing the group data zone space.

Service Metadata. Each runtime image in the group has its
metadata. The file index describes the namespace of the root
file system, and each file handle points to a page table that is
used to index pages on the group data zone. In addition, ser-
vice metadata contains a bitmap that records the distribution
of the runtime image’s pages in the group data zone, which
will be used during incremental loading.

Group Metadata
(Shared by the services using the same base image)

Service Metadata 
(Service 0)

Runtime 

List
Meta

(Service 0)

Meta
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Group Data 
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Figure 3: Runtime Image Layout. Services based on the same base
(original) image form a group, each with global metadata and a
shared group data zone. Each service has independent metadata for
indexing data in the group data zone.

Group Data Zone. It is a continuous storage space for
storing runtime image data of the group. The pages belonging
to the same group are deduplicated. Deduplication within
the group is reasonable because based on our analysis of
real-world workloads, the duplication of runtime data across
different base images is less than 1%. In addition, the size of
the group data zone is dynamically adjusted with the addition
or deletion of the runtime image.

Generation and Deletion (offline). Figure 3 shows the pro-
cess of runtime image generation in the registry: ❶ When the
generator receives an I/O trace, it initializes the relative group
and service metadata by using the service ID. ❷ Next, the
generator parses out the pages contained in the record from
the base (original) image. The image parsing module can
support different types of images (e.g., OCI, stargz, RAFS)
by adding image format parsers. ❸ The deduplication module
calculates the fingerprint (by SHA256) of the page obtained
in the previous step, and checks whether the same fingerprint
exists in the fingerprint index. ❹ If the fingerprint does not
exist, the generator allocates a new page in the group data
zone, copies the page to it, and updates the fingerprint index.
❺ The page location of the group data zone is recorded in
the related page table, and the related bit in the bitmap of the
group data zone is set to 1 (if it is a new page).

The runtime image is deleted in three cases: 1) The entry-
point of the service is changed; 2) The base image is deleted;
3) Users explicitly invoke the runtime image deletion inter-
face provided by FlacIO. The deletion process examines the
fingerprint of each page in the target runtime image and decre-
ments its reference counting by one. When a page reference
is 0, the fingerprint is deleted and the allocator reclaims its
space. Then, the service metadata and the target runtime im-
age information in the group metadata will be deleted.

4.2 Runtime Page Cache

FlacIO proposes RTPC (runtime page cache), a special page
cache subsystem to provide a lightweight I/O stack in coordi-
nation with the runtime image. It includes three key designs:
1) A new cache framework built in the OverlayFS to allow
the root file system of the container to be built from the run-
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Figure 4: Runtime Page Cache (RTPC). It is built in the OverlayFS
and stacked on the VFS page cache. The runtime images that belong
to the same group share a RTPC.

time image. 2) An incremental loading mechanism is used to
further improve the efficiency of runtime image loading. 3) A
set of file access logic based on RTPC.

4.2.1 Framework and Operations

Figure 4 shows the framework of RTPC. The runtime images
that belong to the same group share a RTPC. Similar to the
structure of the runtime image group, each RTPC has mul-
tiple service metadata and a group data zone. The structure
of the service metadata includes the file index and multiple
page tables, which are loaded from the service metadata of
the runtime image. The group data zone contains a contigu-
ous kernel memory address space used to store data of the
runtime images. The logic size of the group data zone of the
RTPC is the same as it in the runtime image. However, the
physical space for the group data zone is not allocated until
its associated runtime image is loaded. Each RTPC maintains
a page-granularity bitmap to record which pages in the group
data zone have been loaded (used for incremental loading).
In addition, the global runtime image list records all loaded
runtime images from which the root file system can be found
and mounted.

Incremental Runtime Image Loading. This process en-
sures that data located in the same runtime image group is not
redundantly loaded. The FlacIO driver is responsible for the
incremental loading, and it relies on two new OS primitives
exposed by FlacIO: rt_diff is used to detect which pages of
the target runtime image need loaded; rt_inject is used to
inject a given runtime image into the OverlayFS.

Figure 4 shows the main process: ❶ Obtain the service
metadata of the target runtime image from the registry and
call the rt_diff with the bitmap in the service metadata as
a parameter to obtain the positions of the pages that are not
loaded in the RTPC. The diff_bitmap will be returned from
this step. ❷ Send the diff_bitmap to the registry to request
data. ❸ Pull the missed runtime image data from the registry.
The runtime image service traverses the diff_bitmap and ag-
gregates the missed pages into a single network I/O. ❹ Call

the rt_inject to load the service metadata (file index and
page tables) and the missed pages to the RTPC. Two new OS
primitives provided by RTPC are described below.

Primitive 1: rt_diff. The input parameters of this func-
tion include the service ID (service_id) and the group data
zone bitmap obtained from the service metadata of the run-
time image (dzone_bitmap). The rt_diff will find the corre-
sponding RTPC through the service_id, and the target RTPC
will be created if it does not exist. The bitmap of the RTPC is
then compared with the input dzone_bitmap to find the pages
in the target runtime image that have not yet been loaded
into the RTPC. Finally, the function returns a bitmap of the
missed pages (diff_bitmap) for the runtime image loader (in
the FlacIO driver).

Primitive 2: rt_inject. The input parameters of this
function include the service ID (service_id), the differen-
tial bitmap (diff_bitmap), the service metadata (rt_meta), and
the missed data loaded from the registry (rt_data). The pro-
cess of rt_inject includes three steps: 1) It searches the
target RTPC by using the service_id. 2) It copies the service
metadata and the missed data of the runtime image to the
RTPC. In particular, when injecting data, rt_inject copies
the data from the rt_data buffer to their specified location on
the group data zone based on the diff_bitmap. Note that the
copy overhead can be further optimized with existing zero
copy techniques [22]. 3) It updates the bitmap of the RTPC
and exposes the new runtime image to the global list for root
file system mounting. The association between the root file
system and the runtime image is by mounting.

4.2.2 File Operations on RTPC

RTPC is implemented by hooking the corresponding file inter-
faces of OverlayFS. It is integrated into the existing VFS file
access logic and is transparent to file system users. RTPC is a
read-only kernel cache, which handles the open, read, and
mmap operations on the files and pages in the runtime image.
Accesses to files and pages that are not part of the runtime
image is handled by the original VFS process.

Mount & Unmount: When the container is started with
FlacIO, the container platform uses the -rt flag to mount
the root file system. With the service ID (service_id) passed
in the mount parameter, RTPC associates the corresponding
runtime image to the super block of the root file system. After
that, file accesses on that root file system can be checked in
the super block to determine whether to enter the processing
logic of RTPC. The unmount is the same as the traditional
VFS process, except that the corresponding RTPC (if any) is
marked as idle and taken over by the cache policy.

File Open: When a file in the runtime image is opened,
RTPC gets the corresponding service metadata by using the
pointer recorded in the superblock of the root file system.
RTPC searches the file (by the hash value of the path) in the
file index in the service metadata. If the file exists, the RTPC
points the i_private in the inode to the corresponding page
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table in service metadata. If the file does not exist in the file
index, the open operation falls back to the traditional flow.

File Read: The read operation determines whether the
inode is associated with the RTPC by the i_private pointer. If
not (i.e., pointer is null), the read operation is rolled back to the
traditional VFS read process. Otherwise, the read operation
searches the page table in the service metadata based on
the access offset. If the page exists, the data is read from
the RTPC, otherwise, the read operation falls back to the
traditional VFS process.

File Map: The mmap operation in RTPC is the same as the
traditional process. If a memory address is accessed and it is
not mapped to any physical page, a page fault is triggered. We
customize the page fault mechanism to handle the case where
the target page is on the RTPC. The RTPC page fault mecha-
nism uses the i_private pointer in the inode to check whether
the file is associated with the RTPC. If yes, the corresponding
page in the group data zone is found and its physical address
is mapped to the page fault location. Otherwise, the page fault
rolls back to the traditional process. In addition, the RTPC
page fault also supports the optimizations in the traditional
page faults (e.g., pre-fault).

Performance Analysis of File Access. RTPC is stacked on
VFS and therefore introduces additional logic in file access
operations, but they have minimal impact on the overall per-
formance. For data that resides in the RTPC, this type of
access even outperforms traditional VFS because of the small
size of the runtime image that makes data indexing efficient.
For data that resides in the VFS page cache but is stacked by
the RTPC, file access needs to be forwarded. However, the de-
tection logic is lightweight (lookup in a small hash table), so
this overhead is almost negligible. We evaluate these effects
in the experiments in §5.2.5.

4.2.3 Cache Policy

FlacIO keeps the runtime image in the memory for the entire
lifetime of the container. At the same time, FlacIO allows
recently used runtime images to be cached on the host node
to improve startup efficiency in strong locality scenarios. The
maximum memory space used for RTPC can be configured
by the user. During each runtime image loading, FlacIO deter-
mines whether the RTPC size exceeds the threshold. If yes,
FlacIO attempts to evict the cached runtime images in the

FIFO manner (other advanced algorithms also apply [23,30]).
When a container is destroyed, the corresponding root file
system (if has) is unmounted and its associated RTPC space
is reclaimed. If the space is still insufficient, e.g., all run-
time images have running containers or the reclaimed space
is smaller than the incoming runtime image, the container
startup process rolls back to the lazy loading mechanism.

4.3 Putting Everything Together

4.3.1 Implementation

In the FlacIO prototype, the RTPC and the FlacIO driver are
implemented in the OverlayFS and the Containerd, respec-
tively, which are fundamental components of mainstream con-
tainer platforms with lazy loading. The runtime image man-
agement is a standalone service deployed in the registry node.
To this end, the container platform is implemented based on
the OverlayFS and the Containerd (e.g., CRFS, Nydus) can
directly enable FlacIO without additional code changes. How-
ever, we believe that the design of FlacIO is universal and can
be adapted to any lazy loading system (e.g., block-level lazy
loading). In our prototype, 188LOC and 182LOC are required
for porting FlacIO to CRFS and Nydus, respectively. The core
implementation is detailed below.

Host Kernel: I/O tracker is implemented by adding the
eBPF probes into the I/O path of the container startup (read,
mmap, and page fault) to collect and generate the I/O trace.
RTPC is implemented in the OverlayFS, which exposes the
rt_diff and rt_inject primitives for userspace through
the sysfs. In addition, part of the file operations of the Over-
layFS are redirected to the process logic of RTPC.

Containerd: FlacIO driver is implemented as a plug-in
module in the snapshotter of the Containerd. It is used to
bridge the runtime image service, the I/O tracker, and the
RTPC. FlacIO driver provides the interfaces of rt_create
and rt_delete for the container end-user to build the run-
time image in the probe-based manner. These APIs are im-
plemented by encapsulating the existing interface of the Con-
tainerd. At the same time, FlacIO driver embeds the runtime
image loading process into the traditional container startup
process by encapsulating the RTPC interfaces.

Registry: FlacIO does not modify the normal registry ser-
vice but starts a separate daemon to manage the runtime im-
age, and it interacts with the FlacIO driver by RESTful. Cur-
rently, runtime images are stored in the file system (local or
distributed), but they can also be stored in the object storage
or block storage through simple interface bridging.

4.3.2 End-to-End Workflow

We demonstrate the benefits of FlacIO by putting it into an
end-to-end container cold startup process. The typical file-
level lazy loading process is used as an example. Figure 5
shows the end-to-end workflow.
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In the “Deploy” stage, the container platform loads the
manifest and the configuration of the target base (original)
image from the registry. Since the information of the runtime
image is recorded in the manifest, FlacIO can load the meta-
data of the target runtime image once the manifest is parsed.
Because of the small size of the runtime image metadata, the
loading overhead can easily overlap with other operations of
the container platform.

In the “Running” stage, FlacIO starts to pull the image data
after obtaining the metadata of the runtime image (may start
before this state). The image pulling process can overlap (in
whole or in part) with the container environment preparation
(e.g., creating cgroup). After the data of the runtime image
is loaded, FlacIO injects it into the RTPC. If the container
starts with FlacIO, the root file system of the container can
be built only after the runtime image is injected. Fortunately,
this blocking interval is short in many scenarios because of
the small size of the runtime image.

In the “Ready” stage, the service in the container starts
to initialize, which triggers a large number of I/Os in tradi-
tional lazy loading systems. In contrast, FlacIO does nothing
because the data required for container service startup has
been included in the runtime image, therefore, the service
can complete this stage with the efficiency of the full image
loading solution.

Warm Startup. Container services can be started from run-
time images in the memory of the host node (cached or in use
by other identical services). The container platform checks
whether the target runtime image exists in the host node before
startup, if yes, the metadata and data loading will be skipped.
The subsequent process of warm startup is the same as that in
the cold startup scenario (e.g., mount and file accesses).

4.3.3 Comparison with Other Optimizations

All analyzed/evaluated systems are equipped with prefetch
cache, while they use different prefetching strategies. They
can be divided into three categories:

1) Expanded Prefetch: It is the inherent optimization in
the lazy loading solutions (e.g., Nydus [25], CRFS [14]) that
simply loads extra data beyond the missed range. However,
this mechanism is blind, and it relies on the I/O behavior the
container to have strong locality. In fact, this approach is a
negative optimization in some scenarios.

2) Prioritize Files Perferch: As the improvement of the
expanded prefetch, some lazy loading systems (e.g., CRFS
with estargz [10] image format) allow users to provide the
prioritized files list of the image, and the prefetch mecha-
nism loads the image files in descending order of priority.
This optimization relies heavily on user experience. However,
upper-layer users cannot perceive the priority of image files.
At the same time, the mechanism performs prefetching at the
file granularity, which often leads to I/O amplification.

3) Trace Replay: DADI [18] allows users to use blktrace
to trace I/Os during container startup and use FIO to replay the

trace during subsequent container cold startup. As the state-
of-the-arts optimization, it can theoretically load I/Os more
accurately than previous solutions, but it is limited by three
bottlenecks. First, the size of the I/O trace window is difficult
to determine, which results in inefficient I/O replay. Second,
I/O replay is difficult to achieve efficient aggregation, which
affects network efficiency. Third, it relies on an independent
ecosystem (block-level lazy loading) and cannot be a universal
optimization solution.

FlacIO delivers the following advantages compared to re-
lated works: 1) Accurate container I/O tracing. The probe-
based I/O tracing mechanism enables FlacIO to flexibly and
accurately collect I/Os during the startup of different container
services, significantly reducing I/O amplification. 2) High net-
work efficiency. The runtime image is network-friendly and
can significantly improve network efficiency. 3) Lightweight
I/O stack. RTPC simplifies the I/O stack by allowing the
memory state of the root file system to be built in place.

4.4 Discussion

Although FlacIO offers promising performance, it also en-
counters some challenges, which we discuss below.

Trade-offs of Runtime Image. It includes two aspects. 1)
Backend storage space overhead. Thanks to accurate I/O trac-
ing and deduplication, runtime images occupy a small per-
centage of storage space (about 5% of the total). 2) Generality.
Maintaining per-service runtime image imposes a burden on
service updates to some extent. For services that are not fre-
quently updated, one-production for long-term benefit is a
good deal. For services that are frequently updated, FlacIO

can degenerate to the traditional lazy loading mechanism,
which has no negative impact.

Probe-based Tracing Accuracy. Probe-based tracing col-
lects all file I/Os on the root file system only during startup,
thus having 100% accuracy (at page granularity). Consider
two dynamic scenarios: 1) Unchanged services with changed
running load. Container runtime I/Os are not traced, and probe
events ensure external services availability (e.g., HTTP-OK
and library loading), thus accuracy is not affected. 2) Service
(image/entrypoint) changes. Users may need to redefine probe
events and trace I/Os in this scenario.

User Dependence. Users only need to define the probe
in rt_create. FlacIO provides default probes (e.g., HTTP
status detection) that deliver comparable performance for
most services (e.g., cache and network proxy containers). For
framework services, users can incorporate necessary libraries
as probes. Our experiments show that these "fool-like" probes
are already working well. In addition, probe-like mechanisms
are widely used in clouds (e.g., service status detection in
Kubernetes [17]), which can be used for reference.

Memory Footprint. FlacIO can reduce the DRAM foot-
print of lazy loading solutions. RTPC is not an extra cache
but a specialized file system page cache, so image data can
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Figure 6: Cold and Warm Startup Latency.

be loaded directly from the registry into the file system page
cache, saving the memory overhead of prefetch cache in ex-
isting lazy loading systems. In addition, accurate data loading
also reduces the DRAM footprint. In multi-service scenar-
ios, the runtime image deduplication and incremental loading
avoid memory redundancy between services using the same
base image in RTPC. For services belonging to different base
images, according to our experience, the memory repetition
rate does not exceed 1% (between services in Table 3).

Security. FlacIO maintains the same security level as exist-
ing containers. Upon startup, FlacIO loads data into the kernel,
which provdies secure sharing via file system page cache. Dur-
ing runtime, FlacIO does not touch existing container security
mechanisms (e.g., cgroup, namespace).

5 Evaluation

All containers are run on a server with 24-core x86 CPU
@ 2.30GHz, 256GB DRAM, and it is connected to the im-
age registry through 10Gbs network. The operating system
on the server is openEuler 22.03 LTS [27] with Linux 6.5
kernel. The Containerd version is v1.7.1. To demonstrate
the design benefits in FlacIO, we compare FlacIO with five
state-of-the-art image loading solutions: full image loading
(native Containerd), file-level lazy loading (CRFS [14] and
Nydus [25]), block-level lazy loading (DADI [18]), and lazy
loading with trace perfetching (DADI+Trace [6]). For FlacIO,
we adapted it to CRFS and Nydus and included them in all
our experiments.

5.1 Container Startup Performance

We select six popular container services to evaluate the cold
and warm startup latency. To get closer to real-world scenar-
ios, we calculate the latency they can service externally. For
framework services (Pytorch and Tensorflow), the completion
of the startup is indicated by the successful loading of their
core libraries. For daemon services (Postgres, Memcached,
Nginx, and Httpd), the completion of the startup is indicated
by the successful access of their HTTP ports.

We use external and internal probes for daemon and frame-
work services, respectively. For daemon services, the trac-
ing interval is from the time when the container is started
to the time when the service is ready for processing HTTP

requests. For framework services, the trace interval is from
the time when the container is started to the time when the
import (torch and tensorflow) of Python is successfully
executed. We use the same probes unless otherwise specified.
In DADI+Trace, we set the tracing interval to be greater than
the cold startup time of the corresponding container.

5.1.1 Cold Startup Latency

Figure 6(a) shows the results. FlacIO achieves up to 4.5 times
lower latency than the lazy loading solutions in cold startup,
and up to 23 times latency reduction compared to the full
image loading solution. The reason is that FlacIO has low
network overhead, which benefits from the runtime image
design to efficiently aggregate I/O and reduce I/O ampli-
fication. Furthermore, the RTPC ensures that the runtime
image-based I/O stack does not refer to significant overhead.
DADI+Trace is another optimization on lazy loading, which
optimizes the accuracy of image data loading through replay
with pre-collected I/O trace. Compared with DADI-Trace,
CRFS+FlacIO improves performance by 2.7 times (Pytorch),
1.8 times (Tensorflow), 27% (Postgres), 6.5% (Memcached),
0.8% (Nginx), and 36% (Httpd). This is because DADI-Trace
can improve the loading accuracy to some extent, but it still
has I/O amplification and cannot efficiently aggregate net-
work I/Os. Nydus+FlacIO is worse than DADI-Trace in some
containers (Memcached/Nginx/Httpd) due to the overhead of
the underlying lazy loading system (i.e., Nydus vs. CRFS).

Through further analysis of the results, we find that FlacIO

has a greater advantage in images containing a large number
of files (e.g., Pytorch and Tensorflow), because this makes
it more difficult for lazy loading to take advantage of data
locality in the load unit, increasing I/O amplification and
network traffic. For instance, with Tensorflow, CRFS+FlacIO

incurs 3.7, 3.9, and 2.8 times less startup latency than CRFS,
Nydus, and DADI, respectively.

5.1.2 Warm Startup Latency

Warm startup means that the (runtime) image has been cached
locally. We use Postgres and Pytorch to evaluate this case be-
cause other container services have similar results for warm
startup. Figure 6(b) shows that the warm startup latency is sim-
ilar for all systems. For the lazy loading systems, expensive
on-demand loads are not triggered because the page cache
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of the root file system has been warmed up. For the FlacIO-
based systems, FlacIO does not increase the warm startup
latency. Since FlacIO is superimposed on lazy loading sys-
tems, the comparison should be the same system enabled and
disabled FlacIO (i.e., Nydus vs. Nydus+FlacIO and CRFS vs.

CRFS+FlacIO). The main overhead of FlacIO is to mount the
root file system on it and redirect the file I/Os, which is a
lightweight process ensured by the RTPC. In addition, the full
image loading performs the best, but the difference is only a
millisecond-level, which is negligible in many scenarios.

5.2 Design Analysis

This section first breaks down the performance and analyzes
the contributions of the main designs. It then evaluates the
impact of FlacIO on different dimensions of the system (in-
cluding network, storage space, file access performance, mem-
ory, and incremental loading). To simplify, we only report the
results of two representative container images: Postgres and
Pytorch, which represent small (MB-level) and large (GB-
level) images, respectively.

5.2.1 Performance Breakdown

FlacIO consists of two core designs: the runtime image is
used to reduce the network overhead of cold startup, and the
RTPC is used to provide a lightweight host-side I/O stack.
To break down their respective contributions, we evaluate the
overhead of the network and local I/O stack by timing the
associated functions in FlacIO. Since the network and I/O
stack overheads of other systems are difficult to break down
(requiring code changes), we merge the two parts together in
their results (denoted as image loading).

Figure 7 shows that FlacIO reduces Postgres and Pytorch
image data loading overhead by up to 49% and 85% compared
to other tested systems. We believe that the main benefit is
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Figure 9: Network Overhead.

that runtime image improves network access efficiency by
reducing data and traffic on the network (see §5.2.3). At the
same time, the overhead of RTPC (i.e., I/O stack) accounts
for only about 1.41% of the overall overhead on average,
because the root file system only needs to be built by copying
the runtime image to the kernel and associating it with the
metadata of the file system. This proves that RTPC achieves
the design goal of a lightweight I/O stack.

5.2.2 Factor Analysis

We incrementally enable probe-based tracing and RTPC to
show the difference in the benefits of simple exact I/O loading
and using runtime image. Three comparison objects include:
native Nydus/CRFS (Base), only the probe-based tracing is
enabled (Base+PTrace), and both probe-based tracing and
RTPC are enabled (Base+PTrace+RTPC). Figure 8 shows
the results. In Postgres/Pytorch, the probe-based tracing and
the RTPC reduce the latency by more than 8.6%/22.8% and
24.2%/50.0%, respectively. The results prove that only using
trace for accurate loading is effective, but not enough. Because
this still causes a large number of network I/Os and long I/O
paths. The addition of RTPC enables efficient aggregation of
network I/O and rapid construction of the root file system.

5.2.3 Network Overhead

To evaluate the network behavior of each system, we use
the tcpdump to capture network requests during container
cold startup and analyze the data volume and the number
of packets. Figure 9 shows the results. Take Pytorch as an
example, although existing lazy loading solutions reduce the
data volume and the number of packets by 29 and 6.3 times
compared to the full image loading solution, they are still at
least 1.6 and 4.4 times that of FlacIO.

The main reason is that the runtime image ensures that
only the required data is loaded (at the page level) when the
container is started. However, other lazy loading systems have
different I/O amplifications due to the mismatch between the
access granularity and lazy loading granularity. In particu-
lar, although DADI+Trace prefetches data by replaying the
I/O trace collected during the previous startup, it does not
significantly reduce the amount of data loaded. For instance,
DADI+Trace incurs 1.6 and 1.6 times more data volume than
FlacIO in Postgres and Pytorch containers, respectively. This
is because the replayed I/Os are not aggregated efficiently and
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Table 3: Space Overhead of Runtime Image

CRFS Img.

(Compressed)

Nydus Img.

(Compressed)
RT Img.

%

(CRFS/Nydus)

Nginx 69.7MB 94.5MB 4.3MB 6.2%/4.6%
Httpd 64.7MB 88.5MB 2.9MB 4.5%/3.3%
Redis 51.9MB 71.8MB 5.1MB 9.8%/7.1%

Memcached 33.6MB 45.3MB 2.8MB 8.3%/6.2%
Tomcat 213.4MB 262.5MB 34.1MB 16.0%/13.0%

Wordpress 237.4MB 321.5MB 19.1MB 8.0%/5.9%
Postgres 152.1MB 210.9MB 16.2MB 10.7%/7.7%
MySQL 178.1MB 247.6MB 31.8MB 17.9%/12.8%
Pytorch 3348.5MB 4229.1MB 146.5MB 4.4%/3.5%

Total 4349.4MB 5571.7MB 262.8MB 6.0%/4.7%

its trace mechanism cannot accurately trace the I/Os of the
service in the container. In FlacIO, data is stored continuously
in a runtime image, allowing them to be loaded with a single
large I/O. In addition, the probe-based I/O tracing mechanism
enables FlacIO to accurately track the I/O behavior of services
in containers, which also helps reduce network traffic.

5.2.4 Storage Space Overhead

The runtime images are stored in the registry node and bring
extra storage space overhead. We evaluate this overhead of
9 popular container services on two mainstream lazy load-
ing systems (CRFS and Nydus). Table 3 shows that the run-
time images account for 6% and 4.7% of the total size of the
base images (compressed) in CRFS and Nydus, respectively.
We consider it cost-effective to pay around 5% of storage
overhead for up to 2.4 times of startup latency reduction, as
host-side compute resources tend to be more expensive than
back-end storage resources on commercial clouds. In addi-
tion, the storage overhead of the runtime image can be further
reduced by compression, which we put into future work. This
experiment also shows the amount of data required to start up
the different container services, which represent no more than
18% of the traditional image size.

5.2.5 RTPC Performance

We sequentially perform read and memcpy-after-mmap on
a 1GB file with various I/O sizes to evaluate the impact of
stacking the RTPC over the VFS page cache. There are three
access scenarios considered in this experiment: direct access
to the VFS page cache (w/o RTPC), direct access to the RTPC
(RTPC hit), and access redirected from the RTPC to the VFS
page cache (RTPC miss). Figure 10 shows that the impact
of the RTPC on file access is slight regardless of I/O size
and cache status. For example, RTPC miss is 5% less than
w/o RTPC with all I/O size on random read. With mmap,
RTPC hit and RTPC miss incurs an averaged 1.7% and 4.6%
performance difference with w/o RTPC, respectively. This
is because the built-in page index of the runtime image is
efficient, which ensures high performance of file access on
RTPC. For requests that are not hit in the runtime image,
RTPC can simply redirect them to VFS. This experiment

 0

 300

 600

 900

4KB 64KB 1MB

IO
P
S

 (
1

K
)

I/O Size

(a) Sequential Read

w/o RTPC

RTPC Hit

RTPC Miss

 0
 30
 60
 90

 120
 150
 180

4KB 64KB 1MB

IO
P
S

 (
1

K
)

I/O Size

(b) mmap

Figure 10: File Access Performance.
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Figure 11: Memory Footprint and Incremental Loading.

shows that RTPC has little impact on file access.

5.2.6 Memory Footprint

We use vmstat to profile the memory footprint of all tested
systems. Figure 11(a) shows that Nydus+FlacIO has the low-
est memory footprint, only 1.1% to 24% of other competi-
tors. There are two main reasons for this result. First, it ben-
efits from the small I/O amplification of FlacIO, i.e., only
the necessary pages for startup are loaded. Second, exist-
ing lazy loading systems keep data in their internal cache
to reduce network access, resulting in the double caching
problem (VFS page cache and lazy loading cache). In partic-
ular, although the memory footprint of CRFS+FlacIO is also
lower than that of other systems, it is much higher (3.7 times)
than Nydus+FlacIO, mainly because CRFS itself introduces
a high memory footprint. Compared with the original CRFS,
CRFS+FlacIO reduces memory usage by 2.6 times.

5.2.7 Incremental Loading

Because runtime images are service-based, there may be a lot
of data duplication between runtime images generated from
the same base image. FlacIO uses the incremental loading
mechanism to solve this problem. We use the native Pytorch
as the base image and then run three different services on it.
For simplicity, only different Python libraries are imported
into the entrypoints of the three services: the first service
imports only torch, the second service imports torch and
triton, and the third service imports torch, triton, and
numpy. We then directly use the entrypoints of these three
services as the tracing probes for the runtime image genera-
tion. The logical size of the three runtime images is 146MB,
405MB, and 420MB, respectively.
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Figure 12: Performance of Real-world Applications.

We start the three services in sequence and evaluate their
cold startup latency. Figure 11(b) shows that the startup la-
tency of CRFS/Nydus+FlacIO does not increase as the run-
time image increases, because incremental loading only loads
nonexistent pages and skips those duplicates. Compared with
other lazy loading systems, FlacIO has a significant advantage
in the first service, while the advantage of the second and
third services is reduced. Unlike the first service, which needs
to access a large number of files with small I/Os, the second
service only needs to access a large file, and the third service
has a small I/O volume.

5.3 Real-World Application

We evaluate FlacIO in three typical application scenarios in
the cloud, including object storage, machine learning (ML)
training, and dynamic expansion of database. In addition, the
runtime images used in this section are the same as in the
previous experiments.

5.3.1 Object Storage

We start the Memcached container from the cold state and
evaluate the performance of object insertion. The benchmark
inserts 10 thousand, 100 thousand, and 1 million 2KB objects
into the Memcached. Figure 12(a) shows that the throughput
of CRFS+FlacIO and Nydus+FlacIO is up to 2.2 and 1.9 times
that of other systems. This is because existing lazy loading
systems trigger on-demand image loading when objects are
inserted, which affects end-to-end throughput. At the same
time, the throughput of other systems can approach FlacIO-
based systems only when the size of the dataset increases to 1
million. For example, CRFS+FlacIO(Nydus+FlacIO) achieves
8.6% (6.6%) higher throughput than CRFS (Nydus) at 1 mil-
lion workloads. This experiment shows that FlacIO can make
object storage systems on the cloud warm up faster, which is
an important evaluation indicator for cloud products.

5.3.2 ML Training

We evaluate FlacIO in ML training scenario by using the
Keras [16] to train the MNIST dataset [24] in the Tensorflow
container. The container is started from the cold state and
the training dataset is stored in the local file system of the
host node and mounted to the container when the service

is started. Figure 12(b) shows that training on FlacIO-based
systems is 70.1%, 52.1%, 53.5%, and 32% faster than the
full image loading, CRFS, Nydus, and DADI, respectively.
The reason is that a large number of library files need to be
loaded during ML training. As a result, on-demand loading
occurs frequently on the lazy loading system. For the FlacIO-
based systems, the runtime image already contains most of
the image data needed for training, and they are loaded in a
single large network I/O when the container starts.

5.3.3 Auto-Scaling

Elastic microservices and serverless computing rely on au-
tomatic scaling as a fundamental capability, while container
cold startup determines the efficiency of scaling. This section
examines the cluster-wide scaling performance of different
systems. We utilize a cluster of eight nodes, each scaling up
eight Postgres containers. We measure the readiness time
of each container, and plot the cumulative distribution func-
tion (CDF) results of these container readiness times in Fig-
ure 12(c). CRFS has a clear long tail, indicating its very slow
cold startup time, while FlacIO-bsed systems have much bet-
ter tail latency. Moreover, considering the total time to finish
the scaling, CRFS+FlacIO(Nydus+FlacIO) is 55.1% (22.5%)
faster than CRFS (Nydus). Thus, the overall performance of
FlacIO is superior to other systems, confirming our efficiency
benefits from the cluster-wide scaling.

6 Conclusion

Container image service is an important component in the
cloud computing system. We analyze the shortcomings of
existing solutions and conclude that the existing image ab-
straction is the root cause of the high network overhead and
high I/O amplification of container cold startup. Based on this,
we propose a new image abstraction called runtime image,
which delivers the advantages of efficient network transfer and
fast root file system construction. Further, we design FlacIO,
a flat and collective I/O accelerator that includes an efficient
runtime image structure and a lightweight I/O stack to opti-
mize the container image service. The evaluation shows that
the performance of FlacIO is significantly improved compared
with the existing systems in many scenarios.
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