
Towards Rack-as-a-Computer in Memory
Interconnect Era with Coordinated Operating System

Sharing

Yuxin Ren, Mingrui Liu, Hongbo Li, Chang Liao, Xiaojia Huang, Jianhua Zhang,
Hanjun Guo, Yubo Liu, and Ning Jia

Huawei Technologies
China

ABSTRACT

Emerging memory interconnect (such as CXL and HCCS)
promises rack-scale machine to become a reality, as the in-
terconnect enables load/store accessible memory shared
across the entire rack. However, the rack-scale shared mem-
ory poses two unique challenges on the operating system,
primarily because of synchronization bottleneck and reliabil-
ity issue. First, hardware cache coherence is not guaranteed,
thus existing lock-based approach is ineffective to synchro-
nize cross-node memory access. Second, memory faults sig-
nificantly increase, and additional interconnect hops and
switches expand fault surface and radius. As a result, current
systems cannot efficiently leverage in-rack shared memory
and instead manage rack resource in a disaggregated way,
suffering from unnecessary networking/RDMA transmission
overhead and redundant data copies.
This paper proposes FlacOS, a shared operating system

for memory-interconnected rack-scale architecture. FlacOS
fully exploits the scalability, elasticity, and capacity advan-
tages of rack-scale machine through shared memory. FlacOS
strategically extracts and places kernel data structures in the
shared memory to achieve uniform and shared operating
system functionalities within the rack. FlacOS co-designs
lock-free synchronization algorithms and system-wide fault
tolerance mechanism to simultaneously ensure high perfor-
mance and reliability. Experiments using Redis on a physical
640-core rack machine illustrate that FlacOS achieves a la-
tency reduction of 1.75-2.4 times compared to network-based
solutions.

This work is licensed under Creative Commons Attribution International 
4.0.
HotStorage ’25, July 10ś11, 2025, Boston, MA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1947-9/25/07.
https://doi.org/10.1145/3736548.3737832

CCS CONCEPTS

· Software and its engineering→ Operating systems.

KEYWORDS

Operating System, Rack-scale, Memory Interconnect

ACM Reference Format:

Yuxin Ren, Mingrui Liu, Hongbo Li, Chang Liao, Xiaojia Huang,
Jianhua Zhang, Hanjun Guo, Yubo Liu, and Ning Jia. 2025. Towards
Rack-as-a-Computer inMemory Interconnect Era with Coordinated
Operating System Sharing. In The 17th ACMWorkshop on Hot Topics

in Storage and File Systems (HotStorage ’25), July 10ś11, 2025, Boston,

MA, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3736548.3737832

1 INTRODUCTION

Emerging memory interconnect (such as CXL [10, 11], Gen-
Z [17], and HCCS [62]) enables all computing resources
within a rack to access global memory through load/store
semantics. This significantly enhances the rack-level mem-
ory capacity, computing scalability, and resource elasticity,
particularly providing the sharing capability over the sub-
stantial amount of global memory across the entire rack.
Through shared memory, a single operating system (OS)
is possible to uniformly manage all resources within the
rack, thereby eliminating the overhead many of łdata cen-
ters taxesž, such as serialization, memory copying, and net-
working overhead, while greatly reducing operational and
maintenance costs.
Unfortunately, existing systems [5, 18, 28, 45, 54, 65, 69]

fail to efficiently leverage the rack-scale sharing capability.
They either suffers from RDMA transmission overhead or ex-
clusively reserve disaggregated memory to one node without
sharing. This is because simply placing existing OS function-
alities into shared memory to achieve global management is
not feasible. Sharing OS across rack faces challenges primar-
ily in synchronization and reliability. Shared global mem-
ory has higher latency, making frequent access on critical
paths impractical. Moreover, rack-scale shared memory does
not guarantee hardware cache coherence support [2, 14, 50].

77

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3736548.3737832&domain=pdf&date_stamp=2025-07-10


HotStorage ’25, July 10–11, 2025, Boston, MA, USA Y. Ren et al.

Compute Node Memory Node Server Node Server Node

(a) Disaggregated by Network (b) Disaggregated by Load/Store

Private Mem.

Virt. Mem. Sys.

Private Mem.

Shared Mem.

Comm. Sys. 

Sched. Sys. 

File Sys. 

…

Private Mem.

Virt. Mem. Sys.

Comm. Sys. 

Sched. Sys. 

File Sys. 

…

R

D

M

A

V
irt.

M
e

m
. S

y
s

.

C
o

m
m

. S
y
s
.

S
c
h

e
d

. S
y
s
.

F
ile

 S
y
s
.

…

Virt. Mem. Sys.
(Shared Part)

Comm. Sys.
(Shared Part)

File Sys.
(Shared Part)

…

Private Mem.

V
irt.

M
e

m
. S

y
s

.

C
o

m
m

. S
y
s

.

S
c
h

e
d

. S
y
s
.

F
ile

 S
y
s

.

…

Figure 1: Comparison between existing RDMA-based disag-

gregated system and emerging shared rack-scale system.

Consequently, complex functionalities are difficult to directly
share. The reliability of shared memory is significantly com-
promised [14, 34, 66], as additional interconnect hops and
switches increases fault probability and surface.
We propose FlacOS, a new operating system tailored for

memory-interconnected rack-scale architecture. Our key de-
sign principle is to appropriately share kernel functional-
ities data structures in global memory, allowing the rack
to operate and execute as a single multi-core machine. To
efficiently address the challenges posed by cache incoher-
ence and frequent failure, FlacOS incorporates co-designed
synchronization and fault tolerance mechanisms. FlacOS
comprises three core components. The lowest layer is a de-
velopment toolkit, which offers common synchronization,
memory management, and reliability mechanisms. Both ap-
plications and FlacOS utilize the toolkit to build their func-
tionalities. Second, FlacOS kernel reconstructs core system
modules by extracting shared data structures from node-local
private data. Finally, we propose a new system-level fault tol-
erance abstraction which enables vertical system-application
memory and states integration to achieve efficient fault iso-
lation and recovery. We furthermore present a vision on the
future rack-level serverless computing architecture as a pro-
duction use case benefiting better scalability, density, and
availability from FlacOS.
We implement and test FlacOS prototype on both simu-

lated and physical rack-scale environments.With a two-node
640-core physical rack machine which uses HCCS [62] as
memory interconnect, FlacOS achieves a latency reduction
of 1.75-2.4 times compared to network-based solutions in
Redis. On a simulated platform using virtual machines on top
of a shared persistent memory, FlacOS improves container
startup latency by 3.8 times.
The contributions of this paper include:
• We propose a coordinated and partially shared operating
system architecture for memory-interconnected rack-scale
machines.

• We propose fault box abstraction for system-level fault
isolation and co-design synchronization mechanisms to
deliver high performance and reliability simultaneously.
• We present the envision of future rack-level serverless
architecture that utilizes the sharing capability to achieve
high elasticity, availability, and density.

2 BACKGROUND

2.1 Memory Interconnect

The emerging memory interconnect (such as CXL [10, 11],
Gen-Z [17], and HCCS [62]) tightly integrate rack-wide com-
puting infrastructure and memory resource, thereby facilitat-
ing the previously envisioned rack-scale architecture (such
as FireBox [3] and THEMachine [14]) gradually become a re-
ality. Memory interconnect permits load/store accessible
shared memory to all the nodes in the rack. Figure 1(b) de-
picts an abstract representation of the rack-scale architecture.
Each node possesses a local memory, and a global memory
is shared across the rack. This architecture shows several
notable distinctions from fabric-centric computing [34].
• The rack consists of and connects general-purpose com-
puting resources, rather than separate devices pools with
little computing capacity. Thus, each node actively exe-
cutes an independent OS instance.
• Execution entities on all nodes need to interact with each
other via shared memory. However, memory interconnect
supports basic atomic instructions [31, 66] but is not guar-
anteed to provide hardware cache coherence [2, 14, 50].

2.2 Challenges in Shared Memory

As shown in Figure 1(a), existing disaggregated systems [5,
45, 54, 69] ignore the rack-scale sharing capability, and rely
on RDMA to integrate different pools of resource. How-
ever, placing kernel functionalities and data structures in
the global memory to achieve rack-scale shared OS encoun-
ters two design challenges: synchronization and reliability.
• Rack-scale shared memory lacks hardware support for
cache coherence [2, 14, 50]. Consequently, existing syn-
chronization methods, such as locks, are difficult to effec-
tively employ.
• The reliability of global memory is decreased. Current
memory suffers frequent failures due to smaller transistor
size in fabrication and manufacturing defects [13, 39, 55,
66]. Worse still, the multi-hop and interconnect switch
further expands the fault surface. Therefore, system-wide
fault tolerance is critical for rack-scale OS.

78



FlacOS: Towards Rack-as-a-Computer HotStorage ’25, July 10–11, 2025, Boston, MA, USA

FlacDK

Data structures Hardware primitives

Replication Delegation Quiescence

Synchronization

FlacOS

Page tables

rmap

VMA

Memory

Ring buffer

Code context

IPC

Page cache

MetadataFile 
system

Layout optimization

Allocator Placement Reclamation

Memory management

Runtime movement and relocation

Applications

Big Data Serverless Industry SimulationHPC DatabaseWeb

Fault box

Prediction Checkpointing Recovery

Reliability

Local Shared

Block layer

Sockets

Local Shared

Local Shared

Figure 2: FlacOS architecture.

3 FLACOS DESIGN

3.1 FlacOS Architecture

FlacOS is a rack-scale OS that enables the entire rack to
be operated as a single computer The primary objective of
FlacOS is fully exploring the memory semantics and sharing
capability of memory-interconnect rack architecture. Two
principles guide FlacOS design.
• Appropriately placing kernel functionalities and data struc-

tures in the shared global memory to eliminate network data

transfer and redundant data copies within the rack.

• Co-design synchronization and fault tolerance mechanisms

for non-cache-coherent shared data to deliver high perfor-

mance and reliability simultaneously.

Figure 2 presents the FlacOS overview, which contains three
layers. FlacDK (ğ3.2) consists of a set of common mechanism
and primitives to develop FlacOS system services and ap-
plications. FlacOS kernel implements critical functionalities
in the shared global memory and coordinates with node-
local OS instance. The current FlacOS prototype focuses
on memory management (ğ3.3), file system (ğ3.4), and com-
munication subsystem (ğ3.5), with a particular emphasis on
analyzing which data structures should be allocated to global
or local memory. Finally, FlacOS guarantees whole system
reliability via a new system abstraction, fault box (ğ3.6).

3.2 FlacOS Development Kit

FlacDK particularly focuses on thee critical functionalities:
synchronization, memory management, and reliability.
Synchronization. As discussed in ğ2.2, synchronization
around rack-scale shared memory is challenging due to high
memory access latency and potential the lack of hardware-
guaranteed cache coherence. Therefore, the principle of Fla-
cOS synchronization is to avoid using lock-based approach
that causes heavy contention on a few of shared memory
location. FlacDK provides libraries of three level synchro-
nization primitives.

The lowest level library contains hardware specific oper-
ations that directly manipulate the global memory. These
operations include atomic instructions, memory barriers, and
CPU cache related instructions, such as cache flush, invalida-
tion, and write back. The second library offers synchroniza-
tion interfaces, such as locking and lock-free algorithms. The
last library provides high-level concurrent data structures,
such as vector, hash tables, ring buffer, and radix tree.

Especially, FlacDK leverages optimized lock-free synchro-
nization that does not depend on hardware cache coherence.
• Replication-based methods [4, 6, 25, 53]. This approach
maintains a local replica in each node and a shared opera-
tion log to synchronize across nodes. In the common path,
each node only accesses local replica to avoid contention.
Modifications are logged and replayed in each node to
achieve consistent and up-to-date states.
• Delegation-based methods [15, 20, 48, 51]. This approach
partitions data access between nodes, and each node ex-
clusively manipulate a partition. When a node accesses
other partitions, it sends requests to the owner node which
performs the operation on behave of the requesting node.
• Quiescence-based methods [12, 47, 60]. This approach em-
ploys read-copy-update (RCU) style synchronization to
avoid in-place modification. Particularly, this method is
efficient in non-cache-coherent shared memory as it con-
verts tracking stale cache lines to parallel reference in
RCU [49].

Memorymanagement. FlacDK focuses on three aspects of
memory management. 1) An object granularity allocator that
needs to be incorporated into shared object synchronization
and consider memory reclamation [47, 60]. 2) Optimization
algorithms for object layout and allocation packing based on
object hotness or liveness [26, 40]. 3) Runtime object move-
ment and relocation mechanisms that reduce fragmentation,
improve locality, and utilize memory tiering [8, 63].
Reliability. FlacDK affords common mechanisms used for
system fault tolerance. These mechanisms cover the entire
fault handling process, including system monitoring, failure
prediction, fault detection, checkpointing, and recovery. En-
suring reliability necessitates some form of redundancy, such
as data or information redundancy. We intelligently com-
bine these redundancies with synchronization mechanisms,
minimizing both synchronization overhead and redundancy
cost. For instance, redundant data can reuses replicas in
replication-based synchronization. Data checkpointing can
be incorporated with multiple object versions in quiescence-
based synchronization. This integration requires to modify
memory reclamation algorithm to account for both check-
pointing period and pending references in concurrent execu-
tion and stale CPU cache. Additionally, operation logs used

79



HotStorage ’25, July 10–11, 2025, Boston, MA, USA Y. Ren et al.

for synchronization about object updates can be utilized to
achieve state rely during fault recovery.

3.3 FlacOS Memory System

Managing physical and virtual memory is the foundation in
FlacOS to leverage shared memory. It requires new design
for management operations and services, including page
mapping, address translation, TLB shutdown, and dedupli-
cation. Furthermore, rack-scale shared memory naturally
realizes the existing memory disaggregation capability. Thus,
expensive memory services, such as swapping and compres-
sion [19, 59], are no longer needed, which significantly sim-
plifies memory system. FlacOS partitions memory manage-
ment structures between shared and local memory using the
following methods.
Shared heterogeneous page table. The page tables are
stored in global memory, enabling the address spaces sharing
andmulti-threading support across the entire rack. Moreover,
FlacOS page tables are capable of indexing both local and
global memory and unifies them into a single level address
space. However, hardware MMUs must be adapted to access
global memory, and page fault handling in FlacOS must be
capable of allocating and loading pages into global memory.
Local data structures.Memory management control struc-
tures, such as rmap and VMA, are preserved within local mem-
ory of each node, because these structures are not accessed
frequently. Furthermore, these structures can be efficiently
synchronized atop of non-cache-coherent memroy [50].

3.4 FlacOS File System

Building a file system using global memory can fully lever-
age the memory performance advantages. Compared to the
traditional block-based file systems, the software stack of
memory file systems is much lighter. Our customers have
identified some scenarios that require memory file systems,
such as RootFS for containers, temporary data storage and
shuffle in big data analytics, and data sharing and collective
communication in HPC applications. In FlacOS, the file sys-
tem divides its core data structures between shared and local
memory based on the following principles.
Shared page cache. Page cache is critical for file system per-
formance as it bridges the performance gap betweenmemory
and storage device. However, according to the analysis of
our production cluster, page cache consumes a large amount
of memory space. The main reason is that they have a lot
of data duplication across multiple nodes, e.g., a large num-
ber of identical container images need to be stored between
nodes in a cloud service. FlacOS places page cache into the
global memory which enables all nodes to share a single
page cache copy. Shared page cache introduces two benefits.
First, it avoids each node maintaining redundant file page

copies, thus significantly reducing rack-wide memory con-
sumption. Second, the saved memory can be used to cache
more files, effectively increasing the page cache capacity
and file access performance. However, sharing page cache
complicates cache management, such as cache missing han-
dling and dirty data write-back. To solve these issues, we
utilize mechanisms in [37, 38] that combines asynchronous
handling and multi-version updates.
Local data structures. FlacOS keeps other parts of the file
system in the local. We show several typical structures and
why they are not suitable for sharing. First, metadata con-
tains a large number of complex data structures (e.g., tree),
while access patterns contain a large number of small ran-
dom memory accesses. FlacOS keeps it locally to improve
access efficiency, and uses bulk synchronization to reduce
the overhead of cache consistency assurance. Second, the
block layer is placed locally to be compatible with traditional
non-memory semantic storage devices. Additionally, we ex-
pect to enhances journaling in FlacOS to simultaneously
improve reliability and scalability by integrating it with syn-
chronization mechanism [36].

3.5 FlacOS Communication System

Leveraging shared memory can greatly accelerate inter-
process communication (IPC) in FlacOS, as it completely
eliminate overhead of networking or RDMA.
Shared data buffer for zero-copy IPC. FlacOS IPC is com-
patible with domain sockets and supports communication
between processes on different nodes. The data buffer is
allocated in the shared memory, enabling zero-copy data
transmission between nodes. Despite being frequently ac-
cessed in the data plane, the communication access pat-
tern for these buffers remains relatively consistent, such
as streaming or read-only access that do not simultaneously
modify the buffer. Consequently, shared buffers can be easily
synchronized across nodes via cache invalidation.
Shared code context for migration-based RPC. Remote
procedure call (RPC) represents a special form of IPC focus-
ing on control flow transfer between services using func-
tion call semantics. FlacOS optimizes RPC through thread
migration model [16, 41, 58], where the client invokes the
server code by switching address space without switching
the thread. To enhance efficiency and flexibility, FlacOS
places the invoked service code context within shared mem-
ory for the efficient sharing of RPC services among nodes.
The shared context also empowers fast process migration
between nodes and efficient scaling up to support service
elasticity [61, 68]. Furthermore, shared context can be part
of thread runtime snapshot for fast thread creation [46] and
optimized runtime sharing [7].

80



FlacOS: Towards Rack-as-a-Computer HotStorage ’25, July 10–11, 2025, Boston, MA, USA

Node2

Pod

Container

RootFSSocket

FlacOS Shared page cache

Zero-copy IPC

Fault box Memory ……

Serverless Controller

Auto Scaling

……

Storage Management

Node1

Pod

Container

SocketRootFS

Image
loading

Service
communication

Service communication

Image loading

Figure 3: Serverless architecture on top of FlacOS.

Local data structures. Socket structures that maintain com-
munication metadata are stored in the local memory. FlacOS
employs the replication-based method to synchronize meta-
data across nodes to achieve fast and reliable connection
establishment and destination addressing..

3.6 System-wide Reliability

The key of addressing the increasing memory faults involves
minimizing the failure radius and achieving rapid recovery.
Separately enhancing individual component is ineffective to
ensure fault tolerance over the entire system. FlacOS pro-
poses vertical fault box and adaptive redundancy to improve
system reliability.
Fault box. We propose fault box, a new abstraction for sys-
tem level fault isolation. Unlike existing systems which hor-
izontally aggregate the states of different applications to-
gether, a fault box vertically consolidates a single applica-
tion’s memory and status based on the application execution
flow. Thus, falut box allows the complete state set of an
application to be manipulated at once without triggering dif-
ferent system components and independent state recovery.
For example, a fault box encompasses the page table, con-
text, communication buffer, stack, and heap of an application.
This prevents a single failure from propagating to multiple
applications and enables efficient migration and recovery
Adaptive redundancy. Based on user configuration and
task criticality, FlacOS adaptively employs different degree of
reliability methods, such as periodic check-pointing [27, 52],
partial replication [9, 70], and n-modular execution [21, 57].

4 CASE STUDY

4.1 Serverless Computing

We demonstrate the use of FlacOS to reconstruct the ar-
chitecture of serverless computing, an important customer
scenario. Our customers report three top issues in existing
serverless: high (cold) startup latency during elastic scal-
ing [7, 30, 35, 64], performance interference under high con-
tainer density [1, 46], and communication cost between ser-
vices (chains) [32, 42].

 0

 60

 120

 180

 240

64 4096

L
a

te
n

c
y
 (

u
s
)

Request Size (B)

(a) Put
Network FlacOS

 0

 60

 120

 180

 240

64 4096

L
a

te
n

c
y
 (

u
s
)

Request Size (B)

(b) Get

Figure 4: Redis results.

We present the envision of future rack-level serverless
architecture based on FlacOS in Figure 3. FlacOS shared page
cache and file system enable rack-wide container hot startup
by sharing image and runtime data. Services are interacted
using FlacOS IPC via shared memory, avoiding cross-node
networking overhead. Serverless control plane utilizes the
scheduling, fault tolerance, and sharing capability in FlacOS

to achieve high elasticity, availability, and density.

4.2 Prototype Evaluation

We implement a prototype of some components in FlacOS,
including memory management, IPC, and shared page cache.
We test FlacOS prototype on both real and simulated plat-
form. The real rack platform comprises two nodes, and each
node is a Kunpeng 920 server which has 4 80-core NUMA,
leading to a total of 640 cores in the rack. The two nodes are
connected by HCCS memory-interconnect [62] to achieve
shared memory between them. The simulation environment
runs two virtual machines sharing a piece of persistent mem-
ory [23], which allows us to emulate the access latency asso-
ciated with memory-interconnect. We conduct two experi-
ments.

We run Redis tests on the Kunpeng rack platform, with Re-
dis server and client running on separate nodes and interact-
ing via FlacOS IPC. We compare FlacOS with a networking-
based approach, where the client and server communicates
using TCP/IP stack over a direct-connected Ethernet. Fig-
ure 4 compares FlacOS latency against networking of both
set and get request of two request sizes. The majority of the
overhead in the networking method comes from software
overhead, including buffer allocations, data copies, and stack
processing. Thanks to direct access to the shared memory,
FlacOS avoids the most software overhead and reduces the
latency by 1.75-2.4 times compared to networking.
We next test container startup latency on the simulated

platform using a 4GB Pytorch image. After the first node
starts up a container, the second node starts another con-
tainer of the same image. We focus on the startup latency
on the second node. Without FlacOS, the second suffers a

81



HotStorage ’25, July 10–11, 2025, Boston, MA, USA Y. Ren et al.

complete cold start which requires to load image from reg-
istry and takes 21.067s. In FlacOS, its shared page cache
stores container image in the shared memory during the
first node’s startup. Thus, the second node directly loads
image from shared memory, reducing the startup latency
to 5.526s. We also measure the hot startup latency which is
3.02s. Hot startup is faster than FlacOS cold startup because
cold startup still needs to download image metadata, such
as manifest.

5 OPEN CHALLENGES

There are some open challenges that need hardware-software
co-design, and we leave them in the future work of FlacOS.
Device sharing and aggregation. Managing devices
within a rack faces three issues. 1) Global naming and ad-

dressing.We expect devices export a single name and address
across the whole rack. For instance, all nodes have the same
IP address and block namespace. This will considerably sim-
ply maintain operations in the rack. 2) Device sharing. A
device should be available to all nodes to realize flexible re-
quest distribution and flow scheduling [29, 67]. This requires
device drivers and DMA buffers to reside in shared global
memory. 3) Device aggregation. In addition to sharing, a
node is also expected to access all devices, even if they are
attached to other nodes. This is similar to multi-rail RDMA
capability [33, 43] that increases parallelism for individual
I/O or flows.
Rack-wide interrupt. Existing memory-interconnect lacks
efficient inter-rack interrupt support and needs to support
following interrupt types. 1) IPI. It is necessary to be extend
inter-processor interrupt to cores located in different nodes.
2) mwait. Global memory should be capable of triggering in-
terrupt similar to monitor/mwait instructions [22], which
is crucial for fast event notification and convenient debug-
ging. 3) Interrupt routing. External interrupts from devices
should be able to be routed to any core in any node, achieving
irq_balance facility [24] in rack-wide.
System Bootstrapping. Bootstraping a rack-scale com-
puter requires more integration of BIOS functionality and
global shared memory. For example, data structures holding
hardware description, such asmemory topology and bus hier-
archy, can be stored in shared memory to advertise available
hardware resources to FlacOS via FDT [44] or ACPI [56].

6 CONCLUSION

This paper introduces a new operating system called FlacOS
that is designed for memory-interconnected rack-scale ma-
chine. FlacOS utilizes in-rack shared memory to reconstruct
system functionalities, including physical and virtual mem-
ory, file system, and IPC. We suggest that rack-scale reliabil-
ity should be ensured with system-wide memory and states

management instead of enhancing individual system compo-
nents. Thus, FlacOS proposes fault box as a new system ab-
straction that vertically integrates memory of an application
originated from multiple system services. We demonstrates
a rack-level serverless architecture based on FlacOS to enjoy
performance, elasticity, availability, and density benefits. We
test FlacOS prototype using both simulated and physical
rack-scale machine. With a 640-core physical rack machine,
FlacOS achieves 1.75-2.4 times lower Redis request latency
than network-based solutions. On a VM-based simulated
platform, FlacOS improves container startup latency by 3.8
times. We believe that FlacOS paves the way for enabling
OS management and control over shared memory of ś and
augmenting the capabilities of ś the increasing prevalence
of rack-scale machines.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their construc-
tive comments and feedback We also thank our colleagues
in Huawei for their support, including but not limited to
Guangxing Deng, Qiang Li, Ruilin Li, Shixin Liu, Mingtian
Zhang, Liang Li, Yi Chen, Songping Yu, and Rui Xiang. Yubo
Liu is the corresponding author.

REFERENCES
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications. In
17th USENIX Symposium on Networked Systems Design and Implemen-

tation (NSDI’20).
[2] Emmanuel Amaro, Stephanie Wang, Aurojit Panda, and Marcos K.

Aguilera. 2023. Logical Memory Pools: Flexible and Local Disaggre-
gated Memory. In Proceedings of the 22nd ACMWorkshop on Hot Topics

in Networks (HotNets’23).
[3] Krste Asanovic. 2014. FireBox: A Hardware Building Block for 2020

Warehouse-Scale Computers. In Proceedings of the 12th USENIX Con-

ference on File and Storage Technologies (FAST’14).
[4] Ankit Bhardwaj, Chinmay Kulkarni, Reto Achermann, Irina Calciu,

Sanidhya Kashyap, Ryan Stutsman, Amy Tai, and Gerd Zellweger.
2021. NrOS: Effective Replication and Sharing in an Operating Sys-
tem. In 15th USENIX Symposium on Operating Systems Design and

Implementation (OSDI’21).
[5] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al

Maruf, Onur Mutlu, and Aasheesh Kolli. 2021. Rethinking software
runtimes for disaggregated memory. In Proceedings of the 26th ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS’21).
[6] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K.

Aguilera. 2017. Black-box Concurrent Data Structures for NUMA
Architectures. In Proceedings of the Twenty-Second International Con-

ference on Architectural Support for Programming Languages and Oper-

ating Systems (ASPLOS’17).
[7] Joao Carreira, Sumer Kohli, Rodrigo Bruno, and Pedro Fonseca. 2021.

From warm to hot starts: leveraging runtimes for the serverless era.
In Proceedings of the Workshop on Hot Topics in Operating Systems

(HotOS’21).

82



FlacOS: Towards Rack-as-a-Computer HotStorage ’25, July 10–11, 2025, Boston, MA, USA

[8] Lei Chen, Shi Liu, Chenxi Wang, Haoran Ma, Yifan Qiao, Zhe Wang,
Chenggang Wu, Youyou Lu, Xiaobing Feng, Huimin Cui, Shan Lu, and
Harry Xu. 2024. A Tale of Two Paths: Toward a Hybrid Data Plane
for Efficient Far-Memory Applications. In 18th USENIX Symposium on

Operating Systems Design and Implementation (OSDI’24).
[9] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm

Hutchinson, and Andrew Warfield. 2008. Remus: High Availability via
Asynchronous Virtual Machine Replication. In 5th USENIX Symposium

on Networked Systems Design and Implementation (NSDI’08).
[10] CXL [n.d.]. CXL Specifications:

https://www.computeexpresslink.org/download-the-specification.
[11] Debendra Das Sharma, Robert Blankenship, and Daniel Berger. 2024.

An Introduction to the Compute Express Link (CXL) Interconnect.
ACM Comput. Surv. 56, 11, Article 290 (July 2024), 37 pages.

[12] Mathieu Desnoyers, Paul E. McKenney, Alan S. Stern, Michel R. Da-
genais, and Jonathan Walpole. 2012. User-Level Implementations
of Read-Copy Update. IEEE Transactions on Parallel and Distributed

Systems (2012).
[13] Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon, Chris Ma-

son, Tejasvi Chakravarthy, Bharath Muthiah, and Sriram Sankar.
2021. Silent Data Corruptions at Scale. CoRR abs/2102.11245 (2021).
arXiv:2102.11245 https://arxiv.org/abs/2102.11245

[14] Paolo Faraboschi, Kimberly Keeton, TimMarsland, and DejanMilojicic.
2015. Beyond Processor-centric Operating Systems. In 15th Workshop

on Hot Topics in Operating Systems (HotOS’15).
[15] Panagiota Fatourou and Nikolaos D. Kallimanis. 2012. Revisiting the

combining synchronization technique. In Proceedings of the 17th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP’12).
[16] Bryan Ford and Jay Lepreau. 1994. Evolving Mach 3.0 to A Migrating

Thread Model. In USENIX Winter 1994 Technical Conference (USENIX

Winter 1994 Technical Conference).
[17] Gen-Z Specifications 2023. https://genzconsortium.org/specifications/.

[18] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo
Jung. 2022. Direct Access, High-Performance Memory Disaggregation
with DirectCXL. In 2022 USENIX Annual Technical Conference (USENIX

ATC’22).
[19] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,

and Kang G. Shin. 2017. Efficient Memory Disaggregation with Infin-
iswap. In 14th USENIX Symposium on Networked Systems Design and

Implementation (NSDI’17).
[20] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat

combining and the synchronization-parallelism tradeoff. In Proceed-

ings of the Twenty-Second Annual ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA’10).
[21] Petr Hosek and Cristian Cadar. 2015. VARAN the Unbelievable: An

Efficient N-version Execution Framework. In Proceedings of the Twenti-

eth International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS’15).
[22] Jack Tigar Humphries, Kostis Kaffes, David Mazières, and Christos

Kozyrakis. 2021. A case against (most) context switches. In Proceedings

of the Workshop on Hot Topics in Operating Systems (HotOS’21).
[23] Intel. 2021. 3D XPoint DCPMM. https://www.intel.com/content/

www/us/en/products/details/memory-storage/optane-dc-persistent-
memory.

[24] Irqbalance. [n.d.]. The new official site for irqbalance. http://irqbalance.
github.io/irqbalance/

[25] Stefan Kaestle, Reto Achermann, Timothy Roscoe, and Tim Harris.
2015. Shoal: Smart Allocation and Replication of Memory For Paral-
lel Programs. In 2015 USENIX Annual Technical Conference (USENIX

ATC’15).

[26] Sudarsun Kannan, Yujie Ren, and Abhishek Bhattacharjee. 2021.
KLOCs: kernel-level object contexts for heterogeneous memory sys-
tems. In Proceedings of the 26th ACM International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems

(ASPLOS’21).
[27] Oren Laadan and Jason Nieh. 2007. Transparent Checkpoint-Restart of

Multiple Processes on Commodity Operating Systems. In 2007 USENIX

Annual Technical Conference (USENIX ATC’07).
[28] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-

doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bian-
chini. 2023. Pond: CXL-Based Memory Pooling Systems for Cloud
Platforms. In Proceedings of the 28th ACM International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS’23).
[29] Wenxin Li, Xin He, Yuan Liu, Keqiu Li, Kai Chen, Zhao Ge, Zewei

Guan, Heng Qi, Song Zhang, and Guyue Liu. 2024. Flow Scheduling
with Imprecise Knowledge. In 21st USENIX Symposium on Networked

Systems Design and Implementation (NSDI’24).
[30] Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu, Deze

Zeng, Zhuo Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo. 2022.
Help Rather Than Recycle: Alleviating Cold Startup in Serverless Com-
puting Through Inter-Function Container Sharing. In 2022 USENIX

Annual Technical Conference (USENIX ATC’22).
[31] libfam-atomic [n.d.]. Fabric Attached Memory Atomics libary:

https://github.com/FabricAttachedMemory/libfam-atomic.
[32] Guowei Liu, Laiping Zhao, Yiming Li, Zhaolin Duan, Sheng Chen, Yitao

Hu, Zhiyuan Su, and Wenyu Qu. 2024. FUYAO: DPU-enabled Direct
Data Transfer for Serverless Computing. In Proceedings of the 29th

ACM International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS’24).
[33] Jiuxing Liu, A. Vishnu, and D.K. Panda. 2004. Building Multirail In-

finiBand Clusters: MPI-Level Design and Performance Evaluation.
In Proceedings of the 2004 ACM/IEEE Conference on Supercomputing

(SC’04).
[34] Ming Liu. 2023. Fabric-Centric Computing. In Proceedings of the 19th

Workshop on Hot Topics in Operating Systems (HotOS’23).
[35] Yubo Liu, Hongbo Li, Mingrui Liu, Rui Jing, Jian Guo, Bo Zhang,

Hanjun Guo, Yuxin Ren, and Ning Jia. 2025. FlacIO: Flat and Collective
I/O for Container Image Service. In 23rd USENIX Conference on File

and Storage Technologies (FAST’25).
[36] Yubo Liu, Hongbo Li, Yutong Lu, Zhiguang Chen, Nong Xiao, andMing

Zhao. 2020. HasFS: optimizing file system consistency mechanism on
NVM-based hybrid storage architecture. Cluster Computing 23, 4 (Dec.
2020), 2501ś2515.

[37] Yubo Liu, Yutong Lu, Zhiguang Chen, and Ming Zhao. 2020. Pacon:
Improving Scalability and Efficiency of Metadata Service through
Partial Consistency. In 2020 IEEE International Parallel and Distributed

Processing Symposium (IPDPS’20).
[38] Yubo Liu, Yuxin Ren, Mingrui Liu, Hongbo Li, Hanjun Guo, Xie Miao,

Xinwei Hu, and Haibo Chen. 2024. Optimizing File Systems on Hetero-
geneous Memory by Integrating DRAM Cache with Virtual Memory
Management. In 22nd USENIX Conference on File and Storage Technolo-

gies (FAST’24).
[39] Jialun Lyu, Marisa You, Celine Irvene, Mark Jung, Tyler Narmore, Jacob

Shapiro, Luke Marshall, Savyasachi Samal, Ioannis Manousakis, Lisa
Hsu, Preetha Subbarayalu, Ashish Raniwala, Brijesh Warrier, Ricardo
Bianchini, Bianca Schroeder, and Daniel S. Berger. 2023. Hyrax: Fail-in-
Place Server Operation in Cloud Platforms. In 17th USENIX Symposium

on Operating Systems Design and Implementation (OSDI’23).

83



HotStorage ’25, July 10–11, 2025, Boston, MA, USA Y. Ren et al.

[40] Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi
Javanmard, Kathryn S. McKinley, and Colin Raffel. 2020. Learning-
based Memory Allocation for C++ Server Workloads. In Proceedings

of the Twenty-Fifth International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS’20).
[41] Gabriel Parmer. 2010. The Case for Thread Migration : Predictable

IPC in a Customizable and Reliable OS. In Proceedings of the Workshop

on Operating Systems Platforms for Embedded Real-Time applications

(OSPERT’10).
[42] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang, and K. K.

Ramakrishnan. 2022. SPRIGHT: extracting the server from server-
less computing! high-performance eBPF-based event-driven, shared-
memory processing. In Proceedings of the ACM SIGCOMM 2022 Con-

ference (SIGCOMM’22).
[43] Ying Qian and A. Afsahi. 2006. Efficient RDMA-based multi-port

collectives on multi-rail QsNet/sup II/ clusters. In Proceedings 20th IEEE
International Parallel and Distributed Processing Symposium (IPDPS’06).

[44] Jaworowski RafaÅĆ. 2010. Flattened Device Trees for Embedded
FreeBSD. In BSDCan (Ottawa, Canada).

[45] Feng Ren, Mingxing Zhang, Kang Chen, Huaxia Xia, Zuoning Chen,
and Yongwei Wu. 2024. Scaling Up Memory Disaggregated Appli-
cations with SMART. In Proceedings of the 29th ACM International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS’24).
[46] Yuxin Ren, Guyue Liu, Vlad Nitu, Wenyuan Shao, Riley Kennedy,

Gabriel Parmer, Timothy Wood, and Alain Tchana. 2020. Fine-Grained
Isolation for Scalable, Dynamic, Multi-tenant Edge Clouds. In 2020

USENIX Annual Technical Conference (USENIX ATC’20).
[47] Yuxin Ren, Guyue Liu, Gabriel Parmer, and Björn B. Brandenburg. 2018.

Scalable Memory Reclamation for Multi-Core, Real-Time Systems.
In 2018 IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS’18).
[48] Yuxin Ren and Gabriel Parmer. 2019. Scalable Data-structures with

Hierarchical, Distributed Delegation. In Proceedings of the 20th Inter-

national Middleware Conference (Middleware’19).
[49] Yuxin Ren, Gabriel Parmer, andDejanMilojicic. 2020. Bounded incoher-

ence: a programming model for non-cache-coherent shared memory
architectures. In Proceedings of the Eleventh International Workshop on

Programming Models and Applications for Multicores and Manycores

(PMAM’20).
[50] Yuxin Ren, Gabriel Parmer, and Dejan Milojicic. 2020. Ch’i: Scal-

ing Microkernel Capabilities in Cache-Incoherent Systems. In 2020

IEEE/ACM International Workshop on Runtime and Operating Systems

for Supercomputers (ROSS’20).
[51] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu. 2017. ffwd:

delegation is (much) faster than you think. In Proceedings of the 26th

Symposium on Operating Systems Principles (SOSP’17).
[52] Kento Sato, Naoya Maruyama, Kathryn Mohror, Adam Moody, Todd

Gamblin, Bronis R. de Supinski, and Satoshi Matsuoka. 2012. Design
and modeling of a non-blocking checkpointing system. In Proceed-

ings of the International Conference on High Performance Computing,

Networking, Storage and Analysis (SC’12).
[53] Ori Shalev and Nir Shavit. 2006. Predictive log-synchronization. In

Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on

Computer Systems (EuroSys’06).
[54] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.

LegoOS: A Disseminated, Distributed OS for Hardware Resource Dis-
aggregation. In 13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI’18).
[55] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B. Fer-

reira, Jon Stearley, John Shalf, and Sudhanva Gurumurthi. 2015. Mem-
ory Errors in Modern Systems: The Good, The Bad, and The Ugly.

In Proceedings of the Twentieth International Conference on Architec-

tural Support for Programming Languages and Operating Systems (ASP-

LOS’15).
[56] UEFI Forum, Inc. [n.d.]. Advanced Configuration and Power Inter-

face (ACPI) Specification Version 6.4, https://uefi.org/ sites/default/files/

resources/ACPI_Spec_6_4_Jan22.pdf .
[57] Jonas Vinck, Bert Abrath, Bart Coppens, Alexios Voulimeneas, Bjorn

De Sutter, and Stijn Volckaert. 2022. Sharing is caring: secure and
efficient shared memory support for MVEEs. In Proceedings of the

Seventeenth European Conference on Computer Systems (EuroSys’22).
[58] QiWang, Yuxin Ren, Matt Scaperoth, and Gabriel Parmer. 2015. SPeCK:

a kernel for scalable predictability. In 21st IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS’15).
[59] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao

Wang, Blaise Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain,
Chunqiang Tang, and Dimitrios Skarlatos. 2022. TMO: transparent
memory offloading in datacenters. In Proceedings of the 27th ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS’22).
[60] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, and

Michael L. Scott. 2018. Interval-based memory reclamation. In Proceed-

ings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming (PPoPP’18).
[61] ShinaeWoo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia Ratnasamy,

and Scott Shenker. 2018. Elastic Scaling of Stateful Network Func-
tions. In 15th USENIX Symposium on Networked Systems Design and

Implementation (NSDI’18).
[62] Jing Xia, Chuanning Cheng, Xiping Zhou, Yuxing Hu, and Peter Chun.

2021. Kunpeng 920: The First 7-nm Chiplet-Based 64-Core ARM SoC
for Cloud Services. IEEE Micro 41, 5 (2021), 67ś75.

[63] Albert Mingkun Yang, Erik Österlund, and Tobias Wrigstad. 2020.
Improving program locality in the GC using hotness. In Proceedings of

the 41st ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI’20).
[64] Hanfei Yu, Rohan Basu Roy, Christian Fontenot, Devesh Tiwari, Jian

Li, Hong Zhang, Hao Wang, and Seung-Jong Park. 2024. Rainbow-
Cake: Mitigating Cold-starts in Serverless with Layer-wise Container
Caching and Sharing. In Proceedings of the 29th ACM International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS’24).
[65] Yekang Zhan, Haichuan Hu, Xiangrui Yang, ShaohuaWang, Qiang Cao,

Hong Jiang, and Jie Yao. 2024. RomeFS: A CXL-SSD Aware File System
Exploiting Synergy of Memory-Block Dual Paths. In Proceedings of the

2024 ACM Symposium on Cloud Computing (SoCC’24).
[66] Mingxing Zhang, Teng Ma, Jinqi Hua, Zheng Liu, Kang Chen, Ning

Ding, Fan Du, Jinlei Jiang, Tao Ma, and Yongwei Wu. 2023. Partial
Failure Resilient Memory Management System for (CXL-based) Dis-
tributed Shared Memory. In Proceedings of the 29th Symposium on

Operating Systems Principles (SOSP’23).
[67] Zhiyu Zhang, Shili Chen, Ruyi Yao, Ruoshi Sun, Hao Mei, Hao Wang,

Zixuan Chen, Gaojian Fang, Yibo Fan, Wanxin Shi, Sen Liu, and Yang
Xu. 2024. vPIFO: Virtualized Packet Scheduler for Programmable
Hierarchical Scheduling in High-Speed Networks. In Proceedings of

the ACM SIGCOMM 2024 Conference (SIGCOMM’24).
[68] Ziming Zhao, Mingyu Wu, Jiawei Tang, Binyu Zang, Zhaoguo Wang,

andHaibo Chen. 2023. BeeHive: Sub-second Elasticity forWeb Services
with Semi-FaaS Execution. In Proceedings of the 28th ACM International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS’23).

84



FlacOS: Towards Rack-as-a-Computer HotStorage ’25, July 10–11, 2025, Boston, MA, USA

[69] Yijie Zhong, Minqiang Zhou, Zhirong Shen, and Jiwu Shu. 2024.
UniMem: redesigning disaggregated memory within a unified local-
remote memory hierarchy. In Proceedings of the 2024 USENIX Confer-

ence on Usenix Annual Technical Conference (USENIX ATC’24).

[70] Diyu Zhou and Yuval Tamir. 2022. RRC: Responsive Replicated Con-
tainers. In 2022 USENIX Annual Technical Conference (USENIX ATC’22).

85


	Abstract
	1 Introduction
	2 Background
	2.1 Memory Interconnect
	2.2 Challenges in Shared Memory

	3 FlacOS Design
	3.1 FlacOS Architecture
	3.2 FlacOS Development Kit
	3.3 FlacOS Memory System
	3.4 FlacOS File System
	3.5 FlacOS Communication System
	3.6 System-wide Reliability

	4 Case Study
	4.1 Serverless Computing
	4.2 Prototype Evaluation

	5 Open Challenges
	6 Conclusion
	References

