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ABSTRACT

Emerging memory interconnect (such as CXL and HCCS)
promises rack-scale machine to become a reality, as the in-
terconnect enables load/store accessible memory shared
across the entire rack. However, the rack-scale shared mem-
ory poses two unique challenges on the operating system,
primarily because of synchronization bottleneck and reliabil-
ity issue. First, hardware cache coherence is not guaranteed,
thus existing lock-based approach is ineffective to synchro-
nize cross-node memory access. Second, memory faults sig-
nificantly increase, and additional interconnect hops and
switches expand fault surface and radius. As a result, current
systems cannot efficiently leverage in-rack shared memory
and instead manage rack resource in a disaggregated way,
suffering from unnecessary networking/RDMA transmission
overhead and redundant data copies.
This paper proposes FlacOS, a shared operating system

for memory-interconnected rack-scale architecture. FlacOS
fully exploits the scalability, elasticity, and capacity advan-
tages of rack-scale machine through shared memory. FlacOS
strategically extracts and places kernel data structures in the
shared memory to achieve uniform and shared operating
system functionalities within the rack. FlacOS co-designs
lock-free synchronization algorithms and system-wide fault
tolerance mechanism to simultaneously ensure high perfor-
mance and reliability. Experiments using Redis on a physical
640-core rack machine illustrate that FlacOS achieves a la-
tency reduction of 1.75-2.4 times compared to network-based
solutions.
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1 INTRODUCTION

Emerging memory interconnect (such as CXL [10, 11], Gen-
Z [17], and HCCS [62]) enables all computing resources
within a rack to access global memory through load/store
semantics. This significantly enhances the rack-level mem-
ory capacity, computing scalability, and resource elasticity,
particularly providing the sharing capability over the sub-
stantial amount of global memory across the entire rack.
Through shared memory, a single operating system (OS)
is possible to uniformly manage all resources within the
rack, thereby eliminating the overhead many of łdata cen-
ters taxesž, such as serialization, memory copying, and net-
working overhead, while greatly reducing operational and
maintenance costs.
Unfortunately, existing systems [5, 18, 28, 45, 54, 65, 69]

fail to efficiently leverage the rack-scale sharing capability.
They either suffers from RDMA transmission overhead or ex-
clusively reserve disaggregated memory to one node without
sharing. This is because simply placing existing OS function-
alities into shared memory to achieve global management is
not feasible. Sharing OS across rack faces challenges primar-
ily in synchronization and reliability. Shared global mem-
ory has higher latency, making frequent access on critical
paths impractical. Moreover, rack-scale shared memory does
not guarantee hardware cache coherence support [2, 14, 50].
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Figure 1: Comparison between existing RDMA-based disag-

gregated system and emerging shared rack-scale system.

Consequently, complex functionalities are difficult to directly
share. The reliability of shared memory is significantly com-
promised [14, 34, 66], as additional interconnect hops and
switches increases fault probability and surface.
We propose FlacOS, a new operating system tailored for

memory-interconnected rack-scale architecture. Our key de-
sign principle is to appropriately share kernel functional-
ities data structures in global memory, allowing the rack
to operate and execute as a single multi-core machine. To
efficiently address the challenges posed by cache incoher-
ence and frequent failure, FlacOS incorporates co-designed
synchronization and fault tolerance mechanisms. FlacOS
comprises three core components. The lowest layer is a de-
velopment toolkit, which offers common synchronization,
memory management, and reliability mechanisms. Both ap-
plications and FlacOS utilize the toolkit to build their func-
tionalities. Second, FlacOS kernel reconstructs core system
modules by extracting shared data structures from node-local
private data. Finally, we propose a new system-level fault tol-
erance abstraction which enables vertical system-application
memory and states integration to achieve efficient fault iso-
lation and recovery. We furthermore present a vision on the
future rack-level serverless computing architecture as a pro-
duction use case benefiting better scalability, density, and
availability from FlacOS.
We implement and test FlacOS prototype on both simu-

lated and physical rack-scale environments.With a two-node
640-core physical rack machine which uses HCCS [62] as
memory interconnect, FlacOS achieves a latency reduction
of 1.75-2.4 times compared to network-based solutions in
Redis. On a simulated platform using virtual machines on top
of a shared persistent memory, FlacOS improves container
startup latency by 3.8 times.
The contributions of this paper include:
• We propose a coordinated and partially shared operating
system architecture for memory-interconnected rack-scale
machines.

• We propose fault box abstraction for system-level fault
isolation and co-design synchronization mechanisms to
deliver high performance and reliability simultaneously.
• We present the envision of future rack-level serverless
architecture that utilizes the sharing capability to achieve
high elasticity, availability, and density.

2 BACKGROUND

2.1 Memory Interconnect

The emerging memory interconnect (such as CXL [10, 11],
Gen-Z [17], and HCCS [62]) tightly integrate rack-wide com-
puting infrastructure and memory resource, thereby facilitat-
ing the previously envisioned rack-scale architecture (such
as FireBox [3] and THEMachine [14]) gradually become a re-
ality. Memory interconnect permits load/store accessible
shared memory to all the nodes in the rack. Figure 1(b) de-
picts an abstract representation of the rack-scale architecture.
Each node possesses a local memory, and a global memory
is shared across the rack. This architecture shows several
notable distinctions from fabric-centric computing [34].
• The rack consists of and connects general-purpose com-
puting resources, rather than separate devices pools with
little computing capacity. Thus, each node actively exe-
cutes an independent OS instance.
• Execution entities on all nodes need to interact with each
other via shared memory. However, memory interconnect
supports basic atomic instructions [31, 66] but is not guar-
anteed to provide hardware cache coherence [2, 14, 50].

2.2 Challenges in Shared Memory

As shown in Figure 1(a), existing disaggregated systems [5,
45, 54, 69] ignore the rack-scale sharing capability, and rely
on RDMA to integrate different pools of resource. How-
ever, placing kernel functionalities and data structures in
the global memory to achieve rack-scale shared OS encoun-
ters two design challenges: synchronization and reliability.
• Rack-scale shared memory lacks hardware support for
cache coherence [2, 14, 50]. Consequently, existing syn-
chronization methods, such as locks, are difficult to effec-
tively employ.
• The reliability of global memory is decreased. Current
memory suffers frequent failures due to smaller transistor
size in fabrication and manufacturing defects [13, 39, 55,
66]. Worse still, the multi-hop and interconnect switch
further expands the fault surface. Therefore, system-wide
fault tolerance is critical for rack-scale OS.
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Figure 2: FlacOS architecture.

3 FLACOS DESIGN

3.1 FlacOS Architecture

FlacOS is a rack-scale OS that enables the entire rack to
be operated as a single computer The primary objective of
FlacOS is fully exploring the memory semantics and sharing
capability of memory-interconnect rack architecture. Two
principles guide FlacOS design.
• Appropriately placing kernel functionalities and data struc-

tures in the shared global memory to eliminate network data

transfer and redundant data copies within the rack.

• Co-design synchronization and fault tolerance mechanisms

for non-cache-coherent shared data to deliver high perfor-

mance and reliability simultaneously.

Figure 2 presents the FlacOS overview, which contains three
layers. FlacDK (ğ3.2) consists of a set of common mechanism
and primitives to develop FlacOS system services and ap-
plications. FlacOS kernel implements critical functionalities
in the shared global memory and coordinates with node-
local OS instance. The current FlacOS prototype focuses
on memory management (ğ3.3), file system (ğ3.4), and com-
munication subsystem (ğ3.5), with a particular emphasis on
analyzing which data structures should be allocated to global
or local memory. Finally, FlacOS guarantees whole system
reliability via a new system abstraction, fault box (ğ3.6).

3.2 FlacOS Development Kit

FlacDK particularly focuses on thee critical functionalities:
synchronization, memory management, and reliability.
Synchronization. As discussed in ğ2.2, synchronization
around rack-scale shared memory is challenging due to high
memory access latency and potential the lack of hardware-
guaranteed cache coherence. Therefore, the principle of Fla-
cOS synchronization is to avoid using lock-based approach
that causes heavy contention on a few of shared memory
location. FlacDK provides libraries of three level synchro-
nization primitives.

The lowest level library contains hardware specific oper-
ations that directly manipulate the global memory. These
operations include atomic instructions, memory barriers, and
CPU cache related instructions, such as cache flush, invalida-
tion, and write back. The second library offers synchroniza-
tion interfaces, such as locking and lock-free algorithms. The
last library provides high-level concurrent data structures,
such as vector, hash tables, ring buffer, and radix tree.

Especially, FlacDK leverages optimized lock-free synchro-
nization that does not depend on hardware cache coherence.
• Replication-based methods [4, 6, 25, 53]. This approach
maintains a local replica in each node and a shared opera-
tion log to synchronize across nodes. In the common path,
each node only accesses local replica to avoid contention.
Modifications are logged and replayed in each node to
achieve consistent and up-to-date states.
• Delegation-based methods [15, 20, 48, 51]. This approach
partitions data access between nodes, and each node ex-
clusively manipulate a partition. When a node accesses
other partitions, it sends requests to the owner node which
performs the operation on behave of the requesting node.
• Quiescence-based methods [12, 47, 60]. This approach em-
ploys read-copy-update (RCU) style synchronization to
avoid in-place modification. Particularly, this method is
efficient in non-cache-coherent shared memory as it con-
verts tracking stale cache lines to parallel reference in
RCU [49].

Memorymanagement. FlacDK focuses on three aspects of
memory management. 1) An object granularity allocator that
needs to be incorporated into shared object synchronization
and consider memory reclamation [47, 60]. 2) Optimization
algorithms for object layout and allocation packing based on
object hotness or liveness [26, 40]. 3) Runtime object move-
ment and relocation mechanisms that reduce fragmentation,
improve locality, and utilize memory tiering [8, 63].
Reliability. FlacDK affords common mechanisms used for
system fault tolerance. These mechanisms cover the entire
fault handling process, including system monitoring, failure
prediction, fault detection, checkpointing, and recovery. En-
suring reliability necessitates some form of redundancy, such
as data or information redundancy. We intelligently com-
bine these redundancies with synchronization mechanisms,
minimizing both synchronization overhead and redundancy
cost. For instance, redundant data can reuses replicas in
replication-based synchronization. Data checkpointing can
be incorporated with multiple object versions in quiescence-
based synchronization. This integration requires to modify
memory reclamation algorithm to account for both check-
pointing period and pending references in concurrent execu-
tion and stale CPU cache. Additionally, operation logs used
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for synchronization about object updates can be utilized to
achieve state rely during fault recovery.

3.3 FlacOS Memory System

Managing physical and virtual memory is the foundation in
FlacOS to leverage shared memory. It requires new design
for management operations and services, including page
mapping, address translation, TLB shutdown, and dedupli-
cation. Furthermore, rack-scale shared memory naturally
realizes the existing memory disaggregation capability. Thus,
expensive memory services, such as swapping and compres-
sion [19, 59], are no longer needed, which significantly sim-
plifies memory system. FlacOS partitions memory manage-
ment structures between shared and local memory using the
following methods.
Shared heterogeneous page table. The page tables are
stored in global memory, enabling the address spaces sharing
andmulti-threading support across the entire rack. Moreover,
FlacOS page tables are capable of indexing both local and
global memory and unifies them into a single level address
space. However, hardware MMUs must be adapted to access
global memory, and page fault handling in FlacOS must be
capable of allocating and loading pages into global memory.
Local data structures.Memory management control struc-
tures, such as rmap and VMA, are preserved within local mem-
ory of each node, because these structures are not accessed
frequently. Furthermore, these structures can be efficiently
synchronized atop of non-cache-coherent memroy [50].

3.4 FlacOS File System

Building a file system using global memory can fully lever-
age the memory performance advantages. Compared to the
traditional block-based file systems, the software stack of
memory file systems is much lighter. Our customers have
identified some scenarios that require memory file systems,
such as RootFS for containers, temporary data storage and
shuffle in big data analytics, and data sharing and collective
communication in HPC applications. In FlacOS, the file sys-
tem divides its core data structures between shared and local
memory based on the following principles.
Shared page cache. Page cache is critical for file system per-
formance as it bridges the performance gap betweenmemory
and storage device. However, according to the analysis of
our production cluster, page cache consumes a large amount
of memory space. The main reason is that they have a lot
of data duplication across multiple nodes, e.g., a large num-
ber of identical container images need to be stored between
nodes in a cloud service. FlacOS places page cache into the
global memory which enables all nodes to share a single
page cache copy. Shared page cache introduces two benefits.
First, it avoids each node maintaining redundant file page

copies, thus significantly reducing rack-wide memory con-
sumption. Second, the saved memory can be used to cache
more files, effectively increasing the page cache capacity
and file access performance. However, sharing page cache
complicates cache management, such as cache missing han-
dling and dirty data write-back. To solve these issues, we
utilize mechanisms in [37, 38] that combines asynchronous
handling and multi-version updates.
Local data structures. FlacOS keeps other parts of the file
system in the local. We show several typical structures and
why they are not suitable for sharing. First, metadata con-
tains a large number of complex data structures (e.g., tree),
while access patterns contain a large number of small ran-
dom memory accesses. FlacOS keeps it locally to improve
access efficiency, and uses bulk synchronization to reduce
the overhead of cache consistency assurance. Second, the
block layer is placed locally to be compatible with traditional
non-memory semantic storage devices. Additionally, we ex-
pect to enhances journaling in FlacOS to simultaneously
improve reliability and scalability by integrating it with syn-
chronization mechanism [36].

3.5 FlacOS Communication System

Leveraging shared memory can greatly accelerate inter-
process communication (IPC) in FlacOS, as it completely
eliminate overhead of networking or RDMA.
Shared data buffer for zero-copy IPC. FlacOS IPC is com-
patible with domain sockets and supports communication
between processes on different nodes. The data buffer is
allocated in the shared memory, enabling zero-copy data
transmission between nodes. Despite being frequently ac-
cessed in the data plane, the communication access pat-
tern for these buffers remains relatively consistent, such
as streaming or read-only access that do not simultaneously
modify the buffer. Consequently, shared buffers can be easily
synchronized across nodes via cache invalidation.
Shared code context for migration-based RPC. Remote
procedure call (RPC) represents a special form of IPC focus-
ing on control flow transfer between services using func-
tion call semantics. FlacOS optimizes RPC through thread
migration model [16, 41, 58], where the client invokes the
server code by switching address space without switching
the thread. To enhance efficiency and flexibility, FlacOS
places the invoked service code context within shared mem-
ory for the efficient sharing of RPC services among nodes.
The shared context also empowers fast process migration
between nodes and efficient scaling up to support service
elasticity [61, 68]. Furthermore, shared context can be part
of thread runtime snapshot for fast thread creation [46] and
optimized runtime sharing [7].
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Local data structures. Socket structures that maintain com-
munication metadata are stored in the local memory. FlacOS
employs the replication-based method to synchronize meta-
data across nodes to achieve fast and reliable connection
establishment and destination addressing..

3.6 System-wide Reliability

The key of addressing the increasing memory faults involves
minimizing the failure radius and achieving rapid recovery.
Separately enhancing individual component is ineffective to
ensure fault tolerance over the entire system. FlacOS pro-
poses vertical fault box and adaptive redundancy to improve
system reliability.
Fault box. We propose fault box, a new abstraction for sys-
tem level fault isolation. Unlike existing systems which hor-
izontally aggregate the states of different applications to-
gether, a fault box vertically consolidates a single applica-
tion’s memory and status based on the application execution
flow. Thus, falut box allows the complete state set of an
application to be manipulated at once without triggering dif-
ferent system components and independent state recovery.
For example, a fault box encompasses the page table, con-
text, communication buffer, stack, and heap of an application.
This prevents a single failure from propagating to multiple
applications and enables efficient migration and recovery
Adaptive redundancy. Based on user configuration and
task criticality, FlacOS adaptively employs different degree of
reliability methods, such as periodic check-pointing [27, 52],
partial replication [9, 70], and n-modular execution [21, 57].

4 CASE STUDY

4.1 Serverless Computing

We demonstrate the use of FlacOS to reconstruct the ar-
chitecture of serverless computing, an important customer
scenario. Our customers report three top issues in existing
serverless: high (cold) startup latency during elastic scal-
ing [7, 30, 35, 64], performance interference under high con-
tainer density [1, 46], and communication cost between ser-
vices (chains) [32, 42].
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We present the envision of future rack-level serverless
architecture based on FlacOS in Figure 3. FlacOS shared page
cache and file system enable rack-wide container hot startup
by sharing image and runtime data. Services are interacted
using FlacOS IPC via shared memory, avoiding cross-node
networking overhead. Serverless control plane utilizes the
scheduling, fault tolerance, and sharing capability in FlacOS

to achieve high elasticity, availability, and density.

4.2 Prototype Evaluation

We implement a prototype of some components in FlacOS,
including memory management, IPC, and shared page cache.
We test FlacOS prototype on both real and simulated plat-
form. The real rack platform comprises two nodes, and each
node is a Kunpeng 920 server which has 4 80-core NUMA,
leading to a total of 640 cores in the rack. The two nodes are
connected by HCCS memory-interconnect [62] to achieve
shared memory between them. The simulation environment
runs two virtual machines sharing a piece of persistent mem-
ory [23], which allows us to emulate the access latency asso-
ciated with memory-interconnect. We conduct two experi-
ments.

We run Redis tests on the Kunpeng rack platform, with Re-
dis server and client running on separate nodes and interact-
ing via FlacOS IPC. We compare FlacOS with a networking-
based approach, where the client and server communicates
using TCP/IP stack over a direct-connected Ethernet. Fig-
ure 4 compares FlacOS latency against networking of both
set and get request of two request sizes. The majority of the
overhead in the networking method comes from software
overhead, including buffer allocations, data copies, and stack
processing. Thanks to direct access to the shared memory,
FlacOS avoids the most software overhead and reduces the
latency by 1.75-2.4 times compared to networking.
We next test container startup latency on the simulated

platform using a 4GB Pytorch image. After the first node
starts up a container, the second node starts another con-
tainer of the same image. We focus on the startup latency
on the second node. Without FlacOS, the second suffers a
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complete cold start which requires to load image from reg-
istry and takes 21.067s. In FlacOS, its shared page cache
stores container image in the shared memory during the
first node’s startup. Thus, the second node directly loads
image from shared memory, reducing the startup latency
to 5.526s. We also measure the hot startup latency which is
3.02s. Hot startup is faster than FlacOS cold startup because
cold startup still needs to download image metadata, such
as manifest.

5 OPEN CHALLENGES

There are some open challenges that need hardware-software
co-design, and we leave them in the future work of FlacOS.
Device sharing and aggregation. Managing devices
within a rack faces three issues. 1) Global naming and ad-

dressing.We expect devices export a single name and address
across the whole rack. For instance, all nodes have the same
IP address and block namespace. This will considerably sim-
ply maintain operations in the rack. 2) Device sharing. A
device should be available to all nodes to realize flexible re-
quest distribution and flow scheduling [29, 67]. This requires
device drivers and DMA buffers to reside in shared global
memory. 3) Device aggregation. In addition to sharing, a
node is also expected to access all devices, even if they are
attached to other nodes. This is similar to multi-rail RDMA
capability [33, 43] that increases parallelism for individual
I/O or flows.
Rack-wide interrupt. Existing memory-interconnect lacks
efficient inter-rack interrupt support and needs to support
following interrupt types. 1) IPI. It is necessary to be extend
inter-processor interrupt to cores located in different nodes.
2) mwait. Global memory should be capable of triggering in-
terrupt similar to monitor/mwait instructions [22], which
is crucial for fast event notification and convenient debug-
ging. 3) Interrupt routing. External interrupts from devices
should be able to be routed to any core in any node, achieving
irq_balance facility [24] in rack-wide.
System Bootstrapping. Bootstraping a rack-scale com-
puter requires more integration of BIOS functionality and
global shared memory. For example, data structures holding
hardware description, such asmemory topology and bus hier-
archy, can be stored in shared memory to advertise available
hardware resources to FlacOS via FDT [44] or ACPI [56].

6 CONCLUSION

This paper introduces a new operating system called FlacOS
that is designed for memory-interconnected rack-scale ma-
chine. FlacOS utilizes in-rack shared memory to reconstruct
system functionalities, including physical and virtual mem-
ory, file system, and IPC. We suggest that rack-scale reliabil-
ity should be ensured with system-wide memory and states

management instead of enhancing individual system compo-
nents. Thus, FlacOS proposes fault box as a new system ab-
straction that vertically integrates memory of an application
originated from multiple system services. We demonstrates
a rack-level serverless architecture based on FlacOS to enjoy
performance, elasticity, availability, and density benefits. We
test FlacOS prototype using both simulated and physical
rack-scale machine. With a 640-core physical rack machine,
FlacOS achieves 1.75-2.4 times lower Redis request latency
than network-based solutions. On a VM-based simulated
platform, FlacOS improves container startup latency by 3.8
times. We believe that FlacOS paves the way for enabling
OS management and control over shared memory of ś and
augmenting the capabilities of ś the increasing prevalence
of rack-scale machines.
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