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Abstract—The efficiency of metadata processing affects the file
system performance significantly. There are two bottlenecks in
metadata management in existing local file systems: 1) Path
lookup is costly because it causes a lot of disk I/Os, which
makes metadata operations inefficient. 2) Existing file systems
have deep I/O stack in metadata management, resulting in
additional processing overhead. To solve these two bottlenecks,
we decoupled data and metadata management and proposed
a metadata management layer for local file systems. First, we
separated the metadata based on their locations in the namespace
tree and aggregated the metadata into fixed-size metadata buckets
(MDBs). This design fully utilizes the metadata locality and
improves the efficiency of disk I/O in the path lookup. Second,
we customized an efficient MDB storage system on the raw
storage device. This design simplifies the file system I/O stack
in the metadata management and allows metadata lookup to be
completed with constant time complexity. Finally, this metadata
management layer gives users the flexibility to choose metadata
storage devices. We implemented a prototype called Otter. Our
evaluation demonstrated that Otter outperforms native EXT4,
XFS, Btrfs, BetrFS and TableFS in many metadata operations.
For instance, Otter has 1.2 times to 9.6 times performance
improvement over other tested file systems in file opening.

Index Terms—file system, metadata, path lookup, namespace

I. INTRODUCTION

Metadata processing incurs a lot of overhead in real-world

workloads [1]–[3]. To demonstrate this overhead, we used

four workloads (Fileserver, Webserver, Webproxy, Varmail) of

Filebench [4] in EXT4 on HDD for 60 seconds, with 50 GB

data set on a machine with 64 GB RAM. We observed that

metadata operations accounted for more than 39.4% of total

overhead. According to our analysis, there are two bottlenecks

in the metadata processing.

The first bottleneck is the high cost of path lookup. Path

lookup is a frequent operation in the file system. Although

caching directories can speed up path lookup, but it is un-

realistic to cache all directories in memory [5]–[7], so many

path lookups need to be performed on disk. However, on-

disk path lookup is slow in traditional file systems (e.g.

EXT4 [8], XFS [9] and Btrfs [10]). These file systems organize

directories as special files. This design makes path lookup

inefficient because it brings a lot of disk I/O when resolving

directory files. In addition, directories need to be recursively

resolved in the path lookup, which means that the metadata

of the next level directory is difficult to be perceived, so
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traditional file systems are difficult to fully utilize the metadata

locality.

The path lookup bottleneck also exists in KV-based file

systems, such as TableFS [11] and BetrFS [12], which store

metadata in write-optimized KV databases. The reasons for the

inefficiency of path lookup in these systems are: 1) Queries

are slow in the write-optimized databases in some cases.

Most write-optimized databases optimize disk I/O by caching

write operations, but additional overhead (e.g. multi-level table

query and value update) is required for queries. In addition, di-

rectory/file entry lookups require logarithmic time complexity

to complete in these write-optimized index (like LSM-Tree

and Bε-Tree). 2) These KV-based file systems are difficult

to fully utilize the metadata locality in a large namespace.

Although they can indirectly reflect metadata locality by

sorting paths in the tables, the table compaction (in TableFS)

and hierarchical sorting (in BetrFS) will destroy the locality

when the namespace size increases.

The second bottleneck is the deep I/O stack. Traditional

file systems manage metadata on memory and disk separately,

which causes data structure conversion and additional memory

copy. In the KV-based file systems, KV databases will bring

some additional overhead, such as the KV (de)serialization.

At the same time, the KV databases still need to run on top

of the underlying file system.

We designed and implemented Otter, an independent meta-

data management layer to address the above two bottlenecks.

Otter has two key designs. First, it improves the efficiency of

disk I/O in path lookup by reducing the number of I/Os and

cost of indexing on disk; Second, it decouples the metadata

and data management in the local file systems and simplifies

the I/O stack in metadata processing. We discarded stacking

metadata management on file management or KV database

to reduce the overhead of metadata structure conversion and

additional memory copy.

In summary, this paper makes the following contributions:

1) We designed a locality-aware metadata structure to accel-

erate the path lookup. The namespace tree is separated into

some fixed-size metadata buckets (MDBs). The MDB design

can improve the disk I/O efficiency because the path lookup

process can benefit from the metadata locality of the MDBs.

2) We designed an efficient MDB storage system based on

the fix-sized characteristic of MDB, which directly manages

the raw storage device. It simplifies the I/O stack in metadata

management and allows the directory/file entry lookup to be
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Fig. 1: Latency and Disk I/O Times of Opening File.

TABLE I: Overhead Breakdown

Path Depth 1 3 5 7

EXT4 Lookup 0% 24.9% 44.9% 60.2%

Other 100% 75.1% 55.1% 39.8%

Btrfs Lookup 0% 52.1% 68.5% 72.5%

Other 100% 47.9% 31.5% 27.5%

done in constant time. 3) We prototyped our solution based on

FUSE, called Otter. Our evaluations show that Otter achieves

substantial speedup over many well-known file systems in

many metadata operations. For example, Otter has more than

1.2 times to 9.6 times performance improvement than the

tested file systems in file opening.

The rest of the paper is organized as follows: Section II

describes the background and motivations. Section III presents

the design of Otter. Section IV presents the evaluation results.

Section V introduces the related works. Section VI concludes

the paper.

II. BACKGROUND AND MOTIVATIONS

This section introduces and analyzes two common bottle-

necks in the metadata management. First bottleneck is the

slow path lookup. Second bottleneck is the deep I/O stacks

in metadata processing.

A. Path Lookup

Path lookup is a frequent operation in file systems. Although

directory caching can improve the efficiency of path lookup

to some extent, path lookup still takes a lot of overhead in

some scenarios (e.g. random workload, large namespace). We

evaluated the cost of path lookup in EXT4, Btrfs, TableFS and

BetrFS through file open operation on the cold cache. Among

them, EXT4 and Btrfs are traditional file systems, whereas

TableFS and BetrFS are KV-based file systems. We used iostat
to detect the disk I/O times in file opening and used Perf [13]

to break down the latency into path lookup and other overhead.

The namespace trees used in these experiments consisted of

ten layers. It includes approximately one million directories

and files. Figure 1 and Table I illustrate that the latency and

the path lookup overhead increases rapidly as the path depth

increases. According to our analysis, there are two aspects that

lead to inefficient path lookup:

1) Metadata Organization Limitation: a) Traditional file
systems: These file systems organize namespace as special

files. During path lookup, for each level of the target path,

traditional file systems have to search the inode of the target

directory and resolve the directory content to get the inode

number of the next level directory. Figure 1 shows that EXT4

generated a lot of disk I/Os during path lookup. In particular,

EXT4 has many I/Os not only because of the directory resolv-

ing but also due to its inode prefetch mechanism. However, this

mechanism is almost ineffective in this experiment because

EXT4 is difficult to guarantee the metadata locality on the

disk (see the discussion in point 2). Btrfs is better than EXT4,

but at least one disk I/O is required for each level of path.

b) KV-based file systems: These file systems store the

metadata on write-optimized KV databases. They perform well

in some write-intense scenarios, but the path lookup has no

advantage in these systems. Many write-optimized indexes

improve I/O efficiency by caching the write operations on the

tree root. These structures add some overhead to the query

operation (e.g. path lookup). In TableFS, path lookup may

need to retrieve multiple table files in the LSM tree. In BetrFS,

each query operation has to apply all messages in the buffer on

the parent nodes to the leaf before returning the value. Figure

1 shows that the open latency in KV-based file systems is still

high.

2) Metadata Locality Limitation: The ability to take ad-

vantage of the metadata locality also affects path lookup

efficiency. a) Traditional file systems: These file systems are

difficult to accelerate through metadata locality in the path

lookup. First, path lookup needs to recursively resolve the

directory files for each level. Second, metadata are stored as

regular files and file storage cannot perceive the structure of the

namespace, so traditional file systems cannot perform efficient

metadata prefetching.

b) KV-based file systems: In some cases, metadata locality

can be reflected by sorting the paths in KV indexes, but this

method does not work well if the namespace is large. TableFS

sorts the metadata by their parent IDs and entry names on

the tables. However, when the namespace is large, metadata

locality is difficult to be reflected because they will be split

into many SSTables and the table compaction process will

destroy the metadata locality. For BetrFS, it is difficult to

reflect the inter-layer locality in the large namespace. BetrFS

sorts all metadata by their full-paths in a Bε-Tree. They sort

the paths first by the number of slashes, then lexicographically.

However, when the namespace is large and deep, many blocks

will be filled with metadata at the same layer in the directory

tree. Therefore, the inter-layer locality cannot be reflected.

Motivation 1. To improve the path lookup efficiency, we

separated the namespace tree with a subtree partition algorithm

and aggregated the subtree segments into some fixed-size

metadata buckets (MDBs). This method can fully utilize the

metadata locality in any workload and namespace.
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(a) Transitional & KV-based FS (b) Otter

Fig. 2: Architecture Comparison. The solid lines are metadata

I/Os, the dot lines are (part of) data I/Os.

B. IO Stack in Metadata Management

The overhead of I/O stack also needs to be considered in

the metadata management. In traditional file systems, Linux

kernel uses VFS to manage in-memory metadata and provides

a global namespace, whereas the underlying file systems are

responsible for managing their own metadata and namespaces

on disk (Figure 2(a)). So, traditional file systems use differ-

ent metadata structures and management methods between

memory and disk. This design increases the complexity of

the file system I/O stack and takes additional overhead, such

as memory copy and metadata structure conversion. The

overhead of the I/O stack is more obvious on fast storage

devices [14].

The I/O stack in the KV-based file systems is also complex.

As shown in Figure 2(a), the metadata I/O needs to pass

both the KV database and the underlying file system. In

addition, KV databases will incur extra overhead. For example,

metadata are stored as KV pairs in the KV database, and

when metadata is read/written, the whole value needs to be

read/rewritten even if only a small portion of the metadata

is used. It results in unnecessary KV (de)serialization over-

head [15].

Motivation 2. To simplify the I/O stack in metadata man-

agement, we designed an independent metadata management

layer on the raw storage device for local file systems. We

implemented an efficient storage system based on the struc-

tural characteristics of MDBs and used the same metadata

structure on the memory and disk. These designs can provide

fast on-disk metadata indexing and reduce the overhead of

unnecessary data copy and structure conversion on the I/O

stack.

III. OTTER DESIGN

This section first introduces the design and the main oper-

ations of Otter, and then introduces the metadata storage and

show some advantages of metadata bucket design. Finally, it

introduces the file management and consistency guarantee.

A. Overview

Otter is an independent metadata management layer (as

shown in Figure 2(b)). Unlike existing architectures, we sep-

arated the metadata from data management in file systems.

Otter is responsible for managing metadata, which means that

all namespace operations will be done on Otter. Underlying

file systems are only responsible for managing file data. We

organized the metadata by a locality-aware method and used

direct I/O to directly manage raw block device. Otter provides

fast path lookup and a simple metadata I/O stack for local

file systems, which accelerates many metadata operations.

Furthermore, metadata are usually small and are accessed

frequently so they are ideal for storage on devices with high

speed but limited capacity devices (such as flash and non-

volatile memory). Otter gives users the flexibility to choose

metadata storage devices separately from the data storage

devices.

B. Locality-Aware Metadata Organization

Instead of organizing metadata using files or KV pairs,

Otter uses metadata buckets (MDBs) to store the metadata.

An MDB is a fixed-size (default is 128 KB) segment and is

the smallest I/O unit between the DRAM and disk. Figure

3 shows the metadata organization in Otter. The namespace

tree is separated by a subtree partition algorithm, and the

directories/files in the same partition are aggregated into the

same MDB. An MDB includes an entry area and a head.

The entry area includes many preallocated entries for storing

metadata, and they are indexed by a hash table. For a given

directory or file, we used the full path of the directory or file

as a hash key and the offset in the hash table as the hash value.

There are three entry types in an MDB: directory entries, file

entries and skip entries. Since the namespace tree is divided

into many subtrees, we used a skip entry to denote the split

point. The MDB head contains some descriptive information

(Figure 3(b)). Specially, entrance key records the root directory

of the MDB.

Path Lookup. The main process of path lookup is to search

the entry of each parent of the target path. Path lookup starts

from the root directory and MDB 0 (the root directory must

be in MDB 0). For each parent directory, Otter uses its full

path as the key to search the entry in the current MDB. There

are three different possibilities. In the first case, the key hits

an entry in the MDB hash table that is not a skip entry, which

means that the target metadata exists, so Otter can look up

the next level. The second case is an entry miss, which means

the parent does not exist and Otter needs to return the failure

type to the lookup function caller. In the third case, the key

hits a skip entry in the MDB hash table. This outcome means

the target entry is in the other MDB. Otter fetches the MDB

using the MDB ID recorded in the skip entry, then searches

for the entry in the new MDB and increases the current MDB

ID.

Creating Directory. The first step of directory creation is

to look up the parent directory of the given path. Otter tries to

create a new directory entry (dentry) in the MDB that contains

the parent directory. If this MDB is not full then we created

the new dentry in it and complete the create operation. If the

MDB is full then Otter launches the MDB split process and
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(a) MDB in the System

(b) MDB Layout

Fig. 3: Metadata Organization.

retry the directory creation. The MDB split process will be

introduce in Section III.C.

Creating File. File creation is similar to directory creation.

Otter first needs to look up the parent directory in which the

file will be created and create a new file entry in the MDB

that contains its parent directory. Otter allows users to directly

store the small files on the disk. In this case, the data of the

small file are stored in the small file area (as shown in Figure

3(a)). We will introduced the file management in Section III.F.

Link. To link the source file/directory to the target

file/directory, Otter first looks up the entries of the source

and the target files/directories, and then records the MDB ID

and the in-MDB location (offset in the MDB) of the target

file/directory into the source file/directory entry. The subse-

quent accesses on the source file/directory can be redirected

to the target file/directory via the MDB ID and the in-MDB

location.

Removal. Removing files and directories is fast in Otter. For

file removing, Otter only needs to look up the target file entry

and invalidate it. For directory removing, Otter does not need

to remove all subdirectories and files under the target directory

immediately. Instead, it records the removed directory entry to

a list of invalidated entries so that all the directories and files

under the removed subtree become unsearchable. The entries

in the removed subtree still exists in the MDBs. Otter delays

the cleaning process, and it can be merged to other processes

such as MDB splitting and unmount.

Rename. File renaming is simple. Otter finds out the entry

of the target file and rehash it in the MDB (use the new path

as the key). For directory renaming, Otter needs to rehash the

entire target directory. This process can be approximated by

invaliding all entries under the target path and then creating

an identical directory tree under the new path. Renaming

directory will be costly if the target directory is large. In fact,

it is a common challenge for file systems that use full path

indexing [5], [12]. Fortunately, it is generally not a frequent

operation in real-world workloads [15], [16].

C. Namespace Partition

Otter needs to split MDBs to adjust the growth of names-

pace. The ideal partition algorithm should reduce the fre-

quency of MDB splitting while making the MDB as full

as possible. However, it is a challenge in many cases. The

best practice is to design the partition algorithm based on the

workload characteristics, such as the structure of namespace

tree, the frequency of various metadata operations, etc. In our

prototype, we designed a simple algorithm for the case where

the namespace tree is roughly balanced.

In Otter, an MDB will be split if its size exceeds a certain

threshold. The MDB split process is as follows: 1) Find a

split point in the MDB. The result of the partition is mainly

affected by the choice of split point. In our algorithm, we

randomly chose a subtree on the second layer of the entrance

of the MDB as the split point. This lightweight algorithm can

choose the split point with low overhead. 2) Move the entries

(directories and files) under the selected subtree to the new

MDB. 3) Add the skip entry to the old MDB. The skip entry

will redirect requests to the new MDB if the path of the split

point is accessed.

Our experimental results show that this algorithm is effec-

tive when the namespace is relatively balanced. We recur-

sively created a namespace, and the experimental results show

that storing a ten-layer namespace containing approximately

one million directories and files requires approximately 3400

MDBs. This means that more than 70% of the space of

the MDBs can be utilized. However, designing an efficient

partition algorithm for the workloads with skew and frequently

changing namespaces is challenging. We will solve this prob-

lem in our future work.

D. Metadata Storage

The efficiency of metadata storage and indexing on disk can

also significantly affect the metadata processing performance.

Traditional file systems store metadata as files, so they index

the metadata on disk just like regular file data. Most of them

use multilevel index tables or B-Trees (and variants of B-trees)

to index the metadata on disk. KV-based file systems store the

metadata in KV databases, but the metadata will eventually

be stored in the table files of the database in the underlying

file system. So they use the similar indexing methods to index

metadata on disk with as traditional file systems. In Otter, we

designed a more efficient indexing method than traditional and

KV-base file systems.

By considering MDBs as fixed-size structures, we developed

a simple method to index MDBs on the disk. Otter divides the

disk into a number of fixed-size parts that are the same size as

the MDBs (mdb size). We did not use any tree index structure

in Otter, but only maintained a maximum MDB ID and an on-

disk FIFO queue of free MDB IDs. The offset of each MDB on
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the disk can be calculated as mdb id × mdb size. In the MDB

allocation, the allocator returns the MDB ID on the front of the

free MDB queue (if the FIFO queue is not empty). Otherwise,

it returns current maximum MDB ID and then increases the

maximum MDB ID. In MDB reclamation, allocator only needs

to add the MDB ID into the free MDB queue. Thanks to this

design, Otter can quickly locate the target metadata on disk. At

the same time, Otter only needs to pay a very small overhead

of index maintenance. On the other hand, entries are indexed

by hash. so we also can quickly locate the target entry when

the MDB is loaded into memory. In addition, Otter uses the

same metadata structure (MDB) between memory and disk.

It means that we can avoid extra overhead in the I/O stack,

such like metadata structure conversion and (de)serialization,

which is beneficial for high speed storage devices.

E. Advantages of MDB Design

Local file systems are beneficial from Otter: Benefit 1. Otter

accelerates the path lookup, which improves the performance

of many metadata operations. The locality-aware metadata

organization (MDB) improves disk I/O efficiency in path

lookup. Our evaluations show that Otter only needs about 3

disk I/Os, on average, to randomly lookup a ten-level path

(namespace contains one million directories and files), but

existing file systems require approximately one disk I/O per

level. In addition, Otter can quickly index the MDB and the

entry in MDB, which it can finish in constant time complexity.

At the same time, Otter does not need to pay a lot of overhead

on index maintaining.

Benefit 2. Otter reduces the depth of the I/O stack in

metadata management. In traditional file systems, the metadata

management is stacked on the file data management logic

and it will cause a lot of memory operations and disk I/Os.

In KV-based file systems, KV stores will bring some extra

cost and the KV databases also need to be deployed upon

traditional file systems. Unlike traditional and KV-based file

systems, Otter stores metadata on raw device and uses the

same structure to organize metadata on disk and memory. It

can reduce unnecessary memory copy and structure conversion

in metadata processing. In addition, separating metadata and

data give users the flexibility to store metadata on high-speed

storage devices.

F. File Management

Otter provides two methods to manage files: 1) store the

data in the underlying file systems or 2) store the data directly

in Otter. For the first method, users can mount Otter on

the suitable file system based on the workload. For instance,

EXT4 may be more suitable for large file read and write and

BetrFS may perform well under the workload with a large

amount of random small writes. Our FUSE-based prototype

uses underlying file system as an object storage. Otter also

allows users store the files on Otter directly, which is suitable

for small files. As shown in Figure 3(b), Otter reserves an

area for small files on the disk. This area is divided into

multiple fixed-size buckets (one file per bucket). The bucket

Fig. 4: Open Files.

ID is recorded in the file pointer field of the small file entry.

We used the similar method as for the MDBs to index buckets

in small file areas.

G. Consistency

Otter uses journaling to guarantee file system consistency.

We provided metadata consistency guarantee in Otter. It is

similar to the default consistency mode (ordered data mode)

that is provided in some mainstream journal file systems (e.g.,

EXT4, XFS). To guarantee the metadata consistency, dirty

metadata will be logged in the journal after dirty data are

written onto the disk. Therefore, when the system crashes,

the file system can recovery metadata to a consistent state by

redoing the metadata in the journal.

As shown in Figure 3(a), we set aside an area in the disk for

journaling. For small files, we used the journaling mechanism

(metadata are written to the journal after the data are written

to disk) when synchronizing dirty metadata and dirty small

files to the disk. The journaling process is slightly different

for large files case because they are stored in the underlying

file system. To guarantee the correct flushing ordering between

the metadata and data of large file, we call fsync to flush the

dirty file data to the underlying file system before the dirty

metadata are written to the Otter’s journal.

IV. EVALUATION

In this section, we first evaluated Otter’s performance in

common metadata and data operations, and then we used

applications to show Otter’s performance in the real-world

workloads. Finally, we evaluated the impact of MDB size on

Otter’s performance.

We compared Otter with EXT4, XFS, Btrfs, BetrFS (0.4

version), and TableFS. Among them, EXT4, Btrfs and XFS

are widely used kernel file systems. BetrFS is a kernel KV-

based (based on TokuDB) file system. TableFS is a KV-based

(based on LevelDB) file system and it is also implemented

on FUSE. All the results were collected on a server with two

Intel E5 2456 CPUs, 64 GB RAM and 2 TB SAS HDD. Linux

3.11.10 (BetrFS can only be run on this version) was used for

our evaluation. The evaluations were run on cold cache when

we do not specify. We cleaned the memory and remounted the

file system after each experiment to make the cache cold.
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Fig. 5: Create Directories.

A. Metadata Operations

To evaluate the metadata performance of Otter, we selected

four frequent metadata operations: open files, create directo-

ries, link and remove files/directories.

1) Open Files: We evaluated the performance of the file

opening operation with different path depths. The namespace

tree used in this experiment had ten layers and contained

approximately one million directories and files. We randomly

opened a file in the namespace and recorded the duration.

Figure 4 shows the performance comparison in file opening.

Otter’s performance is more than 1.2 times higher than the

traditional file systems (EXT4, Btrfs, XFS), and it is more

than 2.1 times higher than the KV-based file system (TableFS,

BetrFS). The performance improvement of Otter primarily

comes from the efficient disk I/O (most operations require

less than 3 disk I/Os) and the shallow I/O stack. We can see

that the KV-based file systems (BetrFS and TableFS) have no

advantage in this experiment. One of the main reasons is that

they fail to utilize the metadata locality in the path lookup.

For BetrFS, the locality of depth is difficult to reflect in large

namespaces. For TableFS, metadata will be stored on many

SSTables when the namespace is large, thus destroying the

locality. In addition, the KV databases also bring some extra

overhead.

2) Create Directories: Filebench [4] was used to evaluate

the performance of directory creation. We used single thread

to create some directories in the file system and recorded the

duration. In this experiment, we compared to kernel and FUSE

versions of EXT4, XFS, Btrfs and BetrFS. Figure 5 shows the

performance of directory creation.

Compared to traditional file systems, Otter exhibits a perfor-

mance increase of approximately 3.5 to 13.3 times of kernel

EXT4 but it is slower than kernel versions of XFS and Btrfs.

Otter significantly outperforms the FUSE versions of EXT4,

XFS and Btrfs. From this experiment, we also can see that

FUSE will significantly degrade the performance because it

will cause frequent context switching and additional data

copying.

Compared to KV-based file systems, TableFS performs well

in this experiment (compared to the FUSE version of other sys-

tems). One of the reasons is because LevelDB is very friendly

Fig. 6: Remove Directories.

Fig. 7: Remove Files.

for the insert-intensive workload. Otter is the second best

system in the FUSE camp. Otter’s main overhead comes from

the MDB splitting. However, TableFS (LevelDB) puts some

expensive tasks in the background, such as table compaction.

In the future work, we will implement asynchronous MDB

splitting to improve the performance of the create operations.

On the other hand, it is difficult to use the metadata locality

in this scenario because the directory creation process is

recursive.

Another KV-based file system BetrFS does not show an

advantage in this experiment. One of the reasons is that

TokuDB (Bε-Tree) does not perform well in the case of

intensive read-after-write. Write operations in the Bε-Tree are

considered as messages and simply buffered in the inner node,

but read operation needs to flush all messages in the inner

nodes on the root-to-leaf path to the leaf node, and then

returns the values. In directory creation, the values of parents

directories can be accessed shortly after creation, so the caches

of the inner nodes do not work much in this case. Otter

performs better than these KV-based file systems because it

does not need to pay for the index maintenance overhead.

3) Remove Files/Directories: We used the namespaces cre-

ated in the directory creation experiment, and removed them

to evaluate the duration of the directory removal operation.

Figure 6 shows that Otter can significantly outperform the

other tested file systems, and the latency of removal in Otter

does not increase significantly as the directory size increases.
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Fig. 8: Link Directories.

The main reason for this performance improvement is that

Otter does not need to recursively remove the subdirectories

and files under the target removal point. Instead, Otter simply

marks the entry of the removal point and adds it to the invalid

list. The cleaning process then reclaims the invalidated entries

in the background. The overhead of cleaning process will not

be large because we can combine it into other processes, such

as MDB splitting and unmount.

The file removal evaluation was run on a ten layer names-

pace that contains approximately one million files and direc-

tories. We removed files with different path depths from the

namespace and recorded the durations. Figure 7 shows that

Otter outperforms the other tested file systems by approxi-

mately 1.6 to 4.3 times. The main reason for the performance

improvement is that Otter accelerates path lookup and reduces

metadata processing overhead.

4) Linking: We evaluated the linking performance in a

ten layer namespace tree used above. We linked directories

in non-bottom layers (the x-axis in Figure 8) to directories

in the bottom layer and recorded the execution times. The

source directory and target directory were selected randomly.

Figure 8 shows the result of link operation. Otter outperforms

the other tested file systems by approximately 1.9 to 13.6

times. Otter’s performance is more stable as the path depth of

source directory grows. The main reason for the performance

improvement is similar to the previous experiments. These

experiments show that many metadata operations can benefit

from our design.

B. File Operations

We used Filebench [4] to evaluate the file operations in

single thread. There are three phases for each file in this

workload: 1) create an empty file, 2) write 64 KB of data into

the new file and 3) close the file. We evaluated the performance

of creating different numbers of files. We compared to other

kernel file systems on FUSE. Because FUSE enables the file

system processing logic to be implemented in the user space,

it results in considerable data movement between the kernel

space and the user space [17] in the data operations, which

brings additional overhead.

Fig. 9: Performance of File Operations.

TABLE II: Applications Performance

Applications find
(/s)

tar
(/s)

diff
(/s)

stat - 5
(/us)

stat - 9
(/us)

EXT4-FUSE 734.1 1795.4 219.5 55688.2 89659.1

XFS-FUSE 118.2 283.9 26.8 49797.3 84525.2

Btrfs-FUSE 127.4 199.8 30.8 34388.6 66202.2

BetrFS-FUSE 266.8 499.2 67.6 71813.3 79911.7

TableFS 116.5 194.3 21.6 107277.5 180311.6

Otter 58.6 205.5 17.8 24674.2 32465.6

Figure 9 shows the results. We can see Otter’s performance

is higher than EXT4, XFS, Btrfs and BetrFS, but it is lower

than TableFS. The reason for why Otter’s performance is not as

good as TableFS is that file data operation takes up most of the

overhead in this experiment. In TableFS, the log-structure and

compression designs of LevelDB can improve the efficiency

of data I/O. In contrast, Otter only focuses on the optimization

of metadata operations.

C. Applications

To show how Otter performs in real-world workloads, we

evaluated Otter on commonly used applications. Because our

prototype is implemented on FUSE, for fairness, we compared

other kernel file systems on FUSE. We chose several command

line applications for our experiment, including find, tar, diff
and stat. We used the namespace from the previous experi-

ments (ten layers, with one million files and directories). Table

II shows the comparison results.

find. We created five target files on five different directories

in the namespace tree and used the find command to search

them. The results show that Otter significantly outperforms

the other file systems. Because find contains many directory

traversal operations, Otter can take full advantage of the

metadata locality.

tar. We used tar –czf to package the entire namespace.

Otter’s performance is slightly slower than Btrfs and TableFS

but better than EXT4, XFS and BetrFS. One reason for why

Otter’s advantage in this application is not obvious is that

tar contains many data operations and they take up a lot of

overhead, but Otter is mainly to speed up metadata operations.
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Fig. 10: Effects of Different MDB Sizes.

diff. We used diff to compare the two subtrees under the

root of the namespace tree. Otter is faster than other compared

systems. Similar to the find, the metadata locality is strong in

this workload, so Otter has a good performance.

stat. We used stat to obtain the attributes of a file. In Table

II, stat-5 indicates that the object file is in the 5th layer of the

namespace tree; stat-9 is similar. Otter performs the best in all

compared file systems. The performance gap increases as the

depth of the target file increases. In particular, we can see that

KV-based file systems have no advantage in this case. Because

stat is a random access workload, KV-based file systems are

difficult to benefit from the metadata locality.

D. MDB Size

The MDB size is an important parameter in Otter because

it affects the overhead of MDB splitting and the efficiency of

path lookup. We designed an experiment to show the impact of

MDB size. The experiment includes two phases. We created

approximately 20 thousand directories in phase 1 and then

used the find command to search for a file that does not exist in

phase 2 (in the cold cache). Figure 10 shows that the MDB size

has a slight effect on the performance of directory creation; an

appropriate MDB size is beneficial for lookup operations. We

chose 128 KB in our experiments. In practice, the MDB size

needs to be selected according to the workload. For example,

if the locality of the application is strong, it may be more

suitable for a large MDB size, and vice versa for a small

MDB size.

V. RELATED WORK

Metadata Organization. Traditional file systems mange

namespace as files but this method is inefficient in creation

and lookup. Therefore, some studies used KV store to manage

metadata. For example, TableFS [11] and KVFS [18] are

FUSE file systems based on LevelDB. BetrFS [12], [19],

[20] is a kernel file system based on kernel TokuDB [21]–

[24]. BetrFS 0.1 [19] uses full-path as the key, but it is not

friendly for rename and large sequence write. BetrfS 0.2/0.3

[20] uses later-binding journaling and relative-path to handle

the performance bottleneck in the BetrFS 0.1. BetrFS 0.4 [12]

reduces the overhead of maintaining the relative-path in a

KV index by using the full-path as the key and tree surgery

technique. Compared to the file-based and KV-based method,

Otter better utilizes the metadata locality to speed up the path

lookup, thereby improving the efficiency of many metadata

operations.

Path Lookup. Prior research also explored accelerating

path lookup in local file systems. DLFS [5] optimized the

path lookup by direct lookup, but it is difficult to extend to

Linux security modules and difficult to take advantage of the

metadata locality by treating the disk as a single hash table.

Unlike DLFS, Otter retains the path lookup to support the full

POSIX interface. The MDB design of Otter makes it possible

to better utilize the metadata locality compared to DLFS.

C. C. Tsai et al. [25] adds a fast lookup table in VFS and

uses a full-path hashing method such as DLFS to accelerate

path lookup in the memory. Otter accelerates the lookup on

the disk, so they are complementary

Others. Otter simplifies I/O stack in metadata processing by

directly managing disk. Deep I/O stack has significant impact

on the speed of storage devices, especially, when they are fast.

J. Condit et al. [26] and S. R. Dulloor et al. [27] pointed out

that the deep I/O stack will become a bottleneck in the NVM-

based architecture. In addition, B. K. R. Vangoor et al. [17]

introduced the principle of FUSE and analyzed its overhead in

great detail. EXTFUSE [28] proposed a low-cost file system

framework in user space. FUSE overhead can be eliminated

by porting Otter into the kernel.

VI. CONCLUSIONS

This paper considers the inefficient path lookup and com-

plex I/O stack in metadata processing. We designed an efficient

metadata management layer for local file systems. First, we

reorganized the metadata using a locality-aware approach to

improve the disk I/O efficiency in path lookup. Then, we

designed a constant time complexity method to index metadata

on the disk and memory. Finally, we stored metadata on raw

device and used the same metadata structure between memory

and disk to simplify the I/O stack in metadata processing.

Our evaluations show that Otter can speed up many metadata

operations. Our future work will involve two parts as follows:

1) Port Otter to the kernel to improve performance. 2) Explore

methods based on machine learning to accommodate different

workloads to improve the efficiency of the MDB splitting al-

gorithm. 3) Eliminate the limit of fixed-size MDB on directory

size by jointing multiple MDBs
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