
KBP: Mining Block Access Pattern for I/O Prediction with K-Truss

Jia Ma, Xianqi Zheng, Yubo Liu, Zhiguang Chen∗
School of Computer Science and Engineering, Sun Yat-sen University

Guangzhou, Guangdong 510006, China
Email: {majia5, zhengxq27}@mail2.sysu.edu.cn, {yubo.liu, zhiguang.chen}@nscc-gz.cn

Abstract—Block prefetching is a technology widely used to
improve the I/O efficiency of storage systems. Block access
pattern prediction is a key part of the prefetching algorithm.
However, existing block access pattern prediction methods
cannot achieve the goals of low overhead, real-time, and self-
adaptability at the same time. In this paper, we propose
a real-time prediction method, called KBP (K-Truss-based
Block access pattern Prediction). KBP uses SA (Sequential
Access) Filter to identify and filter sequential access patterns to
distinguish different patterns. Then, KBP uses K-Truss dense
subgraph algorithm to detect compound access patterns, so as
to use the time and space advantages of the K-Truss algorithm
to reduce the overhead of access pattern recognition and make
it possible for KBP to run in real time. Furthermore, KBP
uses online reinforcement learning to achieve the goal of self-
adaptability. We evaluate KBP in real-world workloads and
the results show that KBP can improve the hit rate of 11.2%
compared to the state-of-the-art prefetching algorithms on
average.

Index Terms—prefetching, access pattern, K-Truss dense sub-
graph, block storage

1. Introduction

Block storage is an important component of many sys-
tems. For example, many cloud computing systems use Ceph
[1] to provide block storage service for visual machines.
A popular technique to improve the performance of the
block storage is to prefetch the strongly correlated data
blocks into the fast cache layer. The main factor that affects
the efficiency of prefetching is the ability to quickly and
accurately mine block access patterns. The block access
patterns contain two cases: simple and compound [2], [3]. In
the simple case, blocks will be accessed in order or in stride,
which is easy to be predicted and prefetched. However,
there is no obvious rule for block access in the compound
case. The compound case refers to an access sequence in
which there is no regularity in the offset of blocks, but this
access sequence often appears in the block access stream.
The compound case brings a big challenge for the block
access pattern prediction.

* Corresponding author

There are some studies research on the block access
pattern perdition in the compound case. However, they are
sub-optimal: some solutions (e.g., [4], [5], [6]) use a single
perdition mechanism in all cases, which makes them difficult
to work accurately and effectively in a variety of workloads;
although some solutions (e.g, [3]) consider the variety of
workloads, they take high latency and space overhead; some
solutions (e.g., [7], [8]) improve the efficiency of prediction
by allowing the application to provide additional hints, but
this requires modifying the application.

In order to solve the shortcomings of existing block
access pattern prediction algorithms, we follow three de-
sign goals: 1) Versatility. The prediction algorithm should
work well in both simple and compound cases. 2) Low
overhead and real-time. The prediction process cannot
bring too much overhead so that it can run in real time.
3) Adaptability. Due to the access pattern in the compound
case may change as the application is running, this requires
that the prediction algorithm needs to be adaptive.

In this paper, we propose KBP, a block access pattern
prediction algorithm to meet the design principles above.
To achieve the versatility goal, KBP uses SA (Sequential
Access) Filter to divide the data access flow into simple and
compound cases, and uses different prediction algorithms for
different cases. This design makes KBP applicable to any
workload.

To achieve the low overhead and real-time goal, the big
challenge of KBP is to efficiently predict the access pattern
in the compound case. Although the block access pattern in
the compound case is not continuous, the access distance
between blocks still follows certain rules, which we call the
semantic. When KBP detects an access sequence is the com-
pound case, it uses a graph to abstract these semantics and
uses edges to represent the relationship between the blocks.
Then, KBP decomposes the semantic graph into multiple
communities by K-Truss algorithm [9], and each community
represents a recognized compound pattern. Benefit from the
low overhead of relevant algorithms (e.g., [10], [11], [12]),
KBP has low prediction overhead in the compound case and
makes it possible to meet the real-time requirements.

To achieve the adaptability goal, KBP uses online rein-
forcement learning [13] to adapt to the workload change.
When KBP detects that the hit rate drops, it means that
the current access pattern may not fit the workload change
and KBP will reduce the number of the prefetch blocks. By

167

2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom)

978-0-7381-2646-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00035

reducing the number of prefetch blocks, KBP can adapt to
the new access pattern again. Online reinforcement learning
is used to predict the relationship between the number of
prefetch blocks and the hit rate, which makes this adaptive
process more efficient. Also, if the hit rate drops for a while,
it indicates that most of the access patterns identified by
KBP are already invalid. Therefore, the KBP decay strategy
is used to create a new KBP to replace the old one and
relearn the new access pattern.

Our paper makes three contributions.

1. KBP combines SA Filter and K-Truss to allow the
prediction algorithm to be adapted to both simple and com-
pound cases, while only taking low overhead.

2. KBP adopts online reinforcement learning and KBP
decay strategies to make it can quickly adapt to various
workloads.

3. We implement KBP and evaluate it on the real traces.
The experimental results show that KBP boosts the cache hit
ratio by up to 2 times over state-of-the-art cache strategies
ARC [14] and improves over the sequential prefetching
algorithm AMP by 11.2% on average.

The rest of the paper is organized as follows. Section 2
presents the background and our motivation for proposing
KBP. Section 3 describes the design of KBP and the cache
prefetching and replacement strategies. Section 4 reports the
experimental results. Section 5 discusses related works and
the last section concludes the paper.

2. Background and Motivation

2.1. Block Prefetching Algorithm

Prefetching, as a technique with significant effects to
improve storage system cache performance, has been widely
used in a large number of systems.

The most common prefetching approach is to perform
sequential readahead (e.g, [15], [16], [17]). For example, the
well-known prefetching algorithm [16] in the Linux Kernel
can efficiently deal with the pattern from a single sequential
stream and adaptive algorithms such as AMP [18] recognize
multiple sequential patterns at the same time. Although these
algorithms are widely used, their effect is limited.

Stride-based prefetching (e.g, [7], [8]) has also been
studied where strides are detected based on information pro-
vided by the application or a lookahead into the instruction
stream. However, most strides lie within the block size so
it is usually not better than sequential prefetching.

Due to various data structures such as trees, matrices,
and user or program access behavior, there are rules of
block access patterns. Therefore, pattern-aware prefetching
algorithms are proposed in various forms. For example, C-
Miner [3] uses frequent subsequences to mine access pat-
terns offline, but this method is not real-time and adaptive.
Another type is to establish the relationship between blocks
with probability graph (e.g, [19], [20]). However, the space
overhead increases as the number of blocks increases.

Therefore, it is important to propose an online low-
overhead adaptive prefetching algorithm that can recognize
both simple and complex patterns.

2.2. K-Truss Discovery

A graph is a common data structure that consists of a
finite set of vertices and a set of edges connecting them.
Since many real-life problems involve the representation
of the problem space as a network, graphs have become
increasingly important. Especially with the emergence of
big data, graph algorithms are gradually being applied to
the storage system. For example, DAG refers to ”Directed
Acyclic Graph” which is used in Hadoop and Spark to
improve performance.

Among them, the dense subgraph algorithm has attracted
much attention. Among these algorithms, a popular dense
subgraph concept that has recently been studied is K-Truss.
Because K-Truss achieves a balance between the structure
cohesiveness and computational efficiency and it can handle
dynamic graphs easily [21]. In this paper, we use K-Truss
to analyze offline traces and find the algorithm is useful for
mining the block access patterns.

(a) Sequential Stream STR and Single Ordered Ring

(b) Directed Graph and History
Window is 4

(c) Undirected Graph of (b)

Figure 1. Sequential Access And Semantic Graph

2.2.1. What’s K-Truss. We use G = (VG, EG) for an
undirected, simple unweighted graph where VG stand for
the vertex set and EG ⊆ VG × VG are edge set. And the
support of an edge is the number of triangles formed by this
edge in the graph. A K-Truss is the largest subgraph of the
graph that each edge is contained in at least k-2 triangles
within this subgraph [9].

168

Figure 2. Stream STR after sequential filtering And Semantic Graph

The larger k is, the more cohesive the graph is. For the
graph G in Figure 1[c], we can easily figure out it is a 5-
truss because the minimum support is 3. For the graph G in
Figure 2, although e(an, c) is contained in �ancb1 , �ancd,
�anca1

and �ancbm which means the support of it is 4, the
minimum support in G is 3. Thus G is still 5-truss.

2.2.2. K-Truss discovery on offline traces. We use K-
Truss to analyze the actual workload trace and find that
the dense subgraph of K-Truss also exists in the network
structure formed by the blocks. Considering the sequential
access sequence STR in Figure 1 (a) and assuming that
each adjacent I/O access request is associated, we can use a
directed edge to show that they are related. In this way, we
can get the G1 which is in the shape of a single-stranded
ordered ring in Figure 1(a).

However, in the real workload trace, all the I/O requests
from one or more processes will constitute a long I/O
access stream, hence there will be other I/O requests in the
middle of the sequential access sequence. As a result, we
can not recognize it as sequential access easily. Therefore,
researchers often use history window to record n history
requests and the current request block is considered to be
related to the block in history window. When the size of
the history window is 4 and a1 is requested for the second
time in Figure 1(a), then a1 is related to a2, a3, a4 and a5
which is shown in dotted lines in graph G2 in Figure 1(b)
Converting G2 in Figure 1(b) to the undirected graph G3

in Figure 1(c), we can find G3 is a 5-ktruss and G3 better
reflects the correlation between these blocks than G1.

K-Truss can recognize the switching between sequential
sequences. Through sequence recognition and filters, we
only put the first and the last blocks of the sequential access
sequence and nonsequential blocks in the history window.
As shown in Figure 2, blocks a1, an in STR are the first
and the last blocks of the sequential access sequence like
a1, a2, · · · , an. So are b1 and bm. Then we can get the
correlation graph G which shows if an is accessed recently,
b1 is likely to be accessed in a short period and this helps to
connect two sequential sequences and reduce cache missing
rate.

Figure 3. Architecture of KBP

Take the Online trace as an example in Figure 8, which
consists of several sequential access sequences that are
constantly switching. Although AMP is very good at this
kind of trace data and it can effectively increase the hit rate,
AMP suffers from many caches missed during the switch
of two sequential sequences. This problem can be avoided
because the switching of Online is fixed. And KBP can
discover these access patterns so KBP increases the hit ratio
of AMP by 71% when the cache size is 256M.

3. The KBP Algorithm

KBP mines block access patterns on the fly along with
the I/O access stream going and makes efficient I/O predic-
tions. There is no need to modify the lower-level applica-
tions or I/O libraries. As shown in Figure 3 it is the structure
of KBP. Specifically, when access comes, SA Filter is used
to confirm whether current access sequence is sequential
or not. If not, the access will enter the compound pattern
mining part of KBP and establish an edge with blocks main-
tained in the HW(History Window). Then EF(Edge Filter)
is used to record the frequency of each edge and only edges
with frequencies exceeding the Edge threshold are added
to the K-Truss correlation graph. Then we use K-Truss
decomposition algorithm to decompose the graph into dense
subgraphs in order to discover compound access patterns.
Thus, KBP can provide one or more I/O predictions results
if current request satisfies the identified pattern. In addition,
KBP updates the whole architecture through the KBP decay
algorithm to ensure that it can adapt to new workloads in
real-time and provide more accurate I/O predictions.

3.1. Block Access Pattern Mining

We introduce earlier that the access pattern is divided
into sequential and compound patterns in our paper. Since

169

there are many excellent algorithms for identifying sequen-
tial patterns such as AMP, and the sequential pattern can
bring some recognition burden and interference to the detec-
tion of compound patterns, so we use a SA Filter in KBP to
identify and filter sequential sequences for I/O requests. And
K-Truss is mainly used to recognize compound patterns.

SA Filter inherits the core logic of AMP, which con-
siders every single access as a potential sequential access
sequence to discover multiple sequential access patterns
synchronously [2]. Because SA Filter maintains the meta
of recent potential sequential access blocks, it can detect a
sequential access sequence even it is broken by access from
other processes, and adapt to the dynamic expansion of each
sequential access sequence. More details can be found in
[18]. The access stream described later in this section refers
to the stream after SA Filter.

Many researchers have proposed that there may be as-
sociations between blocks that are close to each other in the
request stream. We define this association as a combination
of {pre, next}, that is, a compound pattern of block access
where pre and next represent the address of blocks. This
combination means when pre is accessed, next is likely to
be accessed soon.

We define the access distance [3] between two blocks
as the unique I/O block requests which are different from
these two blocks both. In this way, a compound pattern is
measured according to the principle that two blocks are
likely related only if the access distance between them is
not greater than a predefined value. We use CorrDis for
this predefined value. Therefore, the first condition for two
blocks to form a compound pattern is that the access distance
between them is less than CorrDis.

In the implementation of KBP, it maintains a global
index to label every block in the storage system. We use
HW(History Window) to record the most recently accessed
blocks in the history I/O stream. HW is a queue with the
fixed size of CorrDis and is managed in the FIFO(First In
First Out) manner to preserve the access order of blocks.
HW is used to buffer the previous CorrDis accessed blocks
of the current requested block. When a new block request
bi arrives, it will build compound pattern {hwi, bi} with
the block {hw1, · · · , hwCorrDis} in HW. Consequently, any
two blocks in HW can constitute a compound pattern.

All these combinations produced by HW are regarded as
a directed edge recorded in EF(Edge Filter) in the format of
{src, des}. And it is obvious that the number of edges in EF
is large and a lot of these combinations are meaningless. So
each edge in EF corresponds has a counter Count to record
the frequency of the edge. When this pattern appears again,
Count will be increased by 1. At the same time, we introduce
a new variable EdgeThreshold to filter edges, and only those
edges whose Count is larger than EdgeThreshold can be
added to the K-Truss graph. EdgeThreshold is to ensure that
the detected compound pattern had a certain persistence.

The value of EdgeThreshold is related to the frequency
of blocks in the stream. In the cache replacement policy
LFU, blocks with high-frequency will be saved in the MFU
position of the cache which is similar to other strategies such

Figure 4. Directed spanning tree with a3 as root in Figure 1

as LRU and ARC. Therefore, we don’t need to consider the
impact of these high-frequency blocks. Also, most blocks
are accessed only once and these blocks are meaningless for
us to explore the compound. So in subsequent experiments,
the value of EdgeThreshold is the average of the block
frequency.

K-Truss graph is regarded as an undirected graph and
it can be decomposed into truss communities using the
K-Truss decomposition algorithm [12]. A truss commu-
nity represents a cluster of associated blocks. In addition,
through the K-Truss dynamic update algorithm [10], [11],
the communities discovered by the K-Truss graph can be
updated in real time. The process of using K-Truss graph to
query a block b as pre in compound patterns is as follows.
First, call KTrussQuery(b) in [10], [11], [12] with b and
obtain the largest K-Truss community related to b. Secondly,
through the directed edges records in the EF, a DST(directed
spanning tree) with b as root can be generated from the truss
community. For example. Figure 4 is the DST of a3 in the
largest 5-truss Figure 1. Finally, the DST can provide I/O
prediction when the specified block is accessed.

In summary, there are two steps to detect the access
pattern in KBP. The first is the recognition of the sequential
pattern. SA Filter base on AMP can recognize sequential
sequences and filter I/O stream. The second is the recogni-
tion of compound patterns. The current requested block b is
correlated with blocks in HW with a fixed-length CorrDis
to generate an edge and then we increase the Count of each
edge by 1 in EF. When the Count reaches EdgeThreshold,
the edge will be added to the K-Truss graph and the K-
Truss communities will be updated with a dynamic update
algorithm. Taking the K-Truss query algorithm and the help
of records in EF, we can get the I/O predictions of b.

3.2. Storage System Optimization with KBP

From Section 3.1, we can explore data access patterns
and provide I/O predictions. Then, we propose data prefetch-
ing and replacement strategies to optimize storage system
performance.

3.2.1. Prefetching. An important application for exploring
block access patterns is to improve the performance and
HR(hit ratio) of cache [18]. Common prefetching strategies
include passive prefetching and active prefetching. Passive
prefetching means prefetch the subsequent blocks that con-
stitute a known access pattern to cache when an I/O request

170

Algorithm 1: Prefetching Algorithm of KBP

Data: Cache C; Trigger max trigger max;
Active prefetching trigger Trigger; Current time t;
Learning rate at time(t) λt;
Average hit-rate at time(t) HRt;
Average prefetched data hit-rate at time(t) PHRt;
Learing rate update interval i;
Input: Request block q

1 if q ∈ C then
2 C.UpdateDataStructures(q);
3 if q is prefetched from KBP then
4 UpdateTrigger(Trigger, λ, trigger max,

1);
5 end
6 if t % Trigger == 0 then
7 KBPPrefetch(KTrussQuery(q));
8 end
9 else

10 if q ∈ KTruss then
11 UpdateTrigger(Trigger, λ, trigger max,

2);
12 end
13 C.ADD(q);
14 KBPPrefetch(KTrussQuery(q));
15 UpdateKTrussStructure(q);
16 end
17 BlockFreq(q) = 1 + BlockFreq(q);
18 if t % i == 0 then
19 UpdateLearningRate(PHRt, PHRt−i, HRt,

HRt−i, λt−i, λt−2i);
20 end

Algorithm 2: UpdateTrigger(Trigger, λ,
trigger max, updateway)

1 �Trigger = trigger max - Trigger;
2 if updateway == 1 then
3 Trigger = max(Trigger ×e−λ, 1);
4 else
5 �Trigger = max(�Trigger × e−λ, 1);
6 end
7 Trigger = ceil(trigger max× Trigger

Trigger+�Trigger
;

is missing. Active prefetching is triggered when the current
request block is found to be consistent with the discovered
compound pattern information. In KBP, passive prefetching
is the same as in AMP. And active prefetching is provided
according to the truss structure of the compound pattern
recognition based on the K-Truss graph. When a part of
blocks in the same truss is hit, it is reasonable to prefetch
the rest of this truss into the cache.

However, the K-Truss graph is constantly changing with
the I/O request flow. Keeping a snapshot will take up a
lot of space overhead, and calculating the hit ratio of a
truss will also bring more time overhead. Therefore, we

introduce a new variable Trigger to control the interval for
active prefetching. Its meaning is the best time for active
prefetching and is adjusted by online learning with regret
minimization [22], [23].

The proposed cache prefetching strategy using KBP
for I/O predictions is shown in Algorithm 1 and only
compound patterns need to be considered. When requested
block q is hit in C(Lines 1-8), the structure of cache C
will update according to the cache replacement strategy
adopted by C(Line 2). If q is previously prefetched from
the K-Truss graph, this shows that the prefetching strategy
is meaningful. Therefore, the UpdateTrigger is used to re-
duce Trigger to increase the frequency of active prefetch-
ing(Lines 3-5). When active prefetching is triggered, use
KTrussQuery(q) to query and get the max K-Truss of q. And
then use KtrussPrefetch to prefetch DST rooted at q into the
cache(Lines 6-8). When q is missing in C(Lines 9-20), first
determine whether q is included in the K-Truss graph. If
q is included in the K-Truss graph and not prefetched, it
indicates the current prefetching strategy is not effective,
so we need to increase Trigger appropriately through Up-
dateTrigger to reduce the number of prefetches(Lines 10-
12). Then fetch block q into the cache(Line 13) and repeat
the previous operations(Line 14). At the same time, add q
into the recognition process of the compound access pattern
recognizer to update the KBP structure(Line 15). Also, the
frequency of every block is recorded in BlockFreq(Line 17)
which provides the selection of the EdgeThreshold value in
the subsequent KBP attenuation. The learning rate λ related
to the adjustment of Trigger will update every update
interval(Lines 18-20). The algorithm UpdateLearningRate is
explained in Algorithm 3.

The adjustment method of Trigger is shown in Al-
gorithm 2, which is an idea of reinforcement learning
by adjusting Trigger according to the prefetch effect.
First, calculate the difference between trigger max and
Trigger(Line 1). When the update way is 1, decrease the
value of Trigger(Lines 2-3). Otherwise, increase Trigger
size by reducing the difference(Lines 4-6). Finally, normal-
ize Trigger(Line 7).

3.2.2. Replacement. Another application for I/O prediction
is the strategy of cache replacement. It is mainly reflected in
the 7 and 14 lines in Algorithm 1. In line 7, if the prefetch
block b already exists in C, the importance of b in the
structure of cache will be increased through the caching
replacement policy. This helps to sufficiently handle churn
workload which is repeated access to a subset of stored
items in which each item is accessed with equal probability.
In line 14, we replace the older truss that already exists in
the cache with prefetched truss as much as possible.

3.3. Dynamic and Adaptive Decay of KBP

On the one hand, due to the continuous I/O requests
stream and the fixed value EdgeThreshold in EF, this will
cause the number of edges recorded in EF to expand and
take up a lot of memory. Also, the count of each edge will

171

Figure 5. Decay of KBP

eventually exceed EdgeThreshold and they will be added to
the K-Truss graph which will cause the graph to eventually
form a complete graph and become meaningless.

On the other hand, due to changes in user behavior
and block modifications, the correlation among blocks has
changed and this makes KBP contain many meaningless
compound patterns. This will reduce the accuracy of I/O
predictions. Therefore, we need to create a new KBP at the
appropriate time to rediscover new access patterns.

If the old KBP is directly replaced by the new KBP, the
new KBP is unable to provide I/O predictions in the first
period because the new K-Truss graph is empty. So the new
KBP needs some time to master new access patterns. There-
fore, K-Truss attenuation is proposed to clean up redundant
invalid patterns and help KBP to provide more accurate I/O
predictions. As shown in Figure 5, ta represents the moment
when KBP1’s I/O prediction effect is not good, so a new
KBP2 is created to explore new access pattern. tb indicates
that the effect of KBP1 is very poor and KBP2 has enough
information to provide the I/O predictions. At this time,
KBP2 is used to replace KBP1. Note that during the period
from ta to tb only KBP1 provides I/O predictions. It’s same
during the period from tc to td.

The prediction effect of KBP is reflected in its I/O
prediction accuracy. PHR(Hit Ratio of Prefetched data) is
important to HR. For example, when PHR is less than HR,
it means that current prefetch rules are meaningless and it
lowers HR. Therefore, The changes of PHR and HR are used
to assist KBP attenuation. The adjustment of the learning
rate λ is also included in this process.

Algorithm 3 is the learning rate update and K-Truss
attenuation method. The changes of PHR, HR and learn-
ing rate over the previous two intervals are calculated re-
spectively(Lines 1-3). When the change of learning rate
is not zero, adjust the λ through gradient descent(Lines
4-7). First, the gradient of the performance(average hit-
rate) concerning the learning rate over the previous two
windows is calculated. If the gradient is positive(negative,
resp.), then the direction of the change of the learning
rate is sustained(reverse, resp.)(Line 5). If the performance
increase(decrease, resp.) the learning rate by an amount pro-
portional to the learning rate change relative to the previous

Algorithm 3: UpdateLearningRate(PHRt,
PHRt−i, HRt, HRt−i, λt−i, λt−2i)

1 �PHR = PHRt - PHRt−i;
2 �HR = HRt - HRt−i;
3 �λ = λt−i - λt−2i;
4 if �λ �= 0 then
5 sign = +1 if �HR

�λ
> 0 else -1;

6 λt = max(λt−i + sign× |λt−i ×�HR|, 0.1);
7 unlearnCount = 0;
8 else
9 if unlearnCount < 10 and (�PHR > 0 or

�HR > 0 then
10 unlearnCount = 0;
11 else
12 if �PHR < 0 or PHRt < HRt × α then
13 unlearnCount = unlearnCount + 1;
14 end
15 end
16 if unlearnCount == 10 then
17 StartNewKBP(BlockFreq);
18 end
19 if unlearnCount >30 then
20 SwitchKBP();
21 unlearnCount = 0;
22 λt = choose randomly between 0.1 & 1;
23 end
24 end

window(Line 6). The learning rate is initialized randomly
between 0.1 and 1.

We use unlearnCount to record the number of times the
learning rate has not changed. When unlearnCount is less
than 10 and the �PHR or �HR is greater than 0, it shows
that although the learning rate has no change for some time,
the scheme is still effective(Lines 9-10). Otherwise, when
the PHR decreases or the PHR is less than the HR by α, un-
learnCount will increase automatically(Lines 11-15). Then if
unlearnCount reaches 10, we use StartNewKBP(BlockFreq)
to start a new KBP and the value of EdgeThreshold in
the new KBP is confirmed according to the frequency of
blocks currently recorded(Lines 16-18). When unlearnCount
is larger than 30, it calls SwitchKBP to replace the old KBP
with the new one to complete the attenuation. At the same
time, reset unlearnCount and λ(Lines 19-23).

In summary, the learning rate is adjusted by the gradient
descent method [24] to effectively adapt to the various work-
load. And the KBP attenuation can maintain the efficiency
of I/O prediction.

4. Evaluation

4.1. Experimental Setup

To measure the I/O prediction ability of KBP, we con-
ducted a series of comparative experiments which are all

172

Figure 6. Hit Ratio of 4 algorithms on 5 traces

based on the ARC caching replacement scheme. In our
experiments, we assume that the requested blocks, whether
predicted or on-demand, are directly inserted into the cache
without considering lower-level storage devices.

Algorithms. We compared KBP against 3 algorithms:
ARC [14], AMP [18], and PureKTruss. In many papers
(e.g., [2], [18]), AMP is better than other algorithms such
as MMS [20] and C-Miner [3] in most cases. Therefore, we
choose AMP for comparative experiments. In addition, we
use PureKTruss which is KBP without SA Filter to compare
with AMP [18] and KBP. PureKTruss treats all patterns as
compound patterns.

Workloads and Simulations. We use 5 common and
widely used data sets for experiments. Experiments are
carried out under various cache sizes to verify that KBP
can adapt to various cache sizes and workloads. The details
of each trace are shown in table 1. We can find the average
frequency is big enough to effectively recognize patterns in
the I/O stream. The initial value of Trigger is 1 by default.

Experimental Indicators. The most important indicator
is cache hit ratio. Also, there are two criteria in the cache
prefetching strategy [3].

1. Avoid prefetching waste. Do not prefetch blocks that
will be removed from the cache before being used.

2. Avoid cache pollution. Do not cause other unused
blocks to be removed due to prefetch blocks, which will
result in repeated I/O.

So we will also record prefetching used ratio, and
increase-ratio of the I/O and cache HR.

TABLE 1. DETAILS OF DIFFERENT WORKLOAD TRACES

Traces Total requests
Unique data

size(MB)
Block Mid-
frequency

Block Max-
frequency

Exchange 2,995,366 9,083 3.68 17,269
Financial 5,585,220 1,078 12.8104 32,135

MSR 8,586,983 2,262 17.21 152,770
Online 1,047,161 450 9.09 1,980

WebSearch 7,802,253 8,973 7.55 627

4.2. Performance Evaluation

As shown in Figure 6, it is the cache HR results of the
four algorithms under different caches size on five traces.
To summarize the findings, the smaller the cache size, the
better the cache HR of KBP. Compared with ARC, the
other three algorithms all have a significant improvement on
Exchange, Online, and WebSearch traces. When the cache
size is 128M, the average increase of AMP is 140.9%, while
the average increase of PureKTruss is 135.5%. In contrast,
KBP has a maximum average increase of 199.1%. Even
at 512M, KBP has a maximum average increase of 65.4%
which is still better than 63.4% of AMP. Comparing KBP
with AMP, the average hit rate of KBP is 11.2% higher
than that of AMP, especially when the cache is 256M on
Online trace, which is the largest and 71% higher than
that of AMP. In addition, the experimental results show
that the effect of PureKTruss is not stable. Because the
sequential sequences interfere with the block access patterns
and increase the identification burden of PureKTruss. KBP
combines the advantages of AMP and PureKTruss, so the
hit rate is usually the best.

173

Figure 7. I/O and HR increase rate between AMP and KBP when cache
size is 256M

We also considered the increased ratio of I/O and hit
rate brought by I/O prediction and prefetching. Figure 7
represents the I/O increase ratio and HR increase ratio of
AMP and KBP relative to the ARC on each trace when the
cache size is 256M. The KBP’s HR increase ratio curve is
always above AMP and the I/O increase ratio curve of KBP
on Exchange, Financial, and WebSearch are close to that
of AMP. Especially on Online trace whose access pattern is
shown in the top part of Figure 8, a normal algorithm will
appear repeated I/O when the cache size is small because
it is a churn workload. However, KBP can provide more
effective prefetching and replacement strategies to reduce
I/O times while significantly increasing HR than AMP.

In addition, we also record the utilization of the prefetch
block. In most cases, the prefetched block utilization of
AMP and KBP are similar. It is between 80%-90%, which
is much higher than the total cache hit rate. The prefetched
data utilization rate of KBP is significantly higher than
that of AMP on Online. While in most cases, PureKTruss
prefetching utilization is not good and PureKTruss performs
more KBP decay.

4.3. Effect of SA Filter

In Figure 8, we discuss regions labeled A, B, C, and
D in this figure. At A, PureKtruss has not learned enough
information yet, so the overall hit rate is the same as ARC.
The hit rate of AMP reaches the maximum during each
sequential access, but the hit rate is minimized between
two sequential access switches. KBP uses SA Filter to
recognize sequential patterns and provide sequential I/O
predictions, and with the help of K-Truss, the HR is still
high during switching. At B, PureKTruss has learned enough
information at this time, and the cache HR of PureKTruss
starts to rise at this time. The effect of AMP is not good at

Figure 8. Effect of SA-Filter on Online and the cache size is 128M. The
first plot is the block access diagram of Online, which is composed of
many sequential access sequences. The second plot shows the cache HR
of AMP, PureKTruss, and KBP in each window which size is 10,000 I/O
requests. The last plot shows the changes of total HR of the four methods
over the entire time period.

C and D due to much switching which results in that the
overall HR of PureKTruss surpassed KBP. It can be found
that in most cases, the overall hit rate of PureKtruss is lower
than that of KBP. This is because SA Filter can effectively
filter the effects of sequential mode and provide sequential
I/O predictions so that KBP will not lose on the starting line.
This proves that it is wise to distinguish between simple
patterns and compound patterns and use different adaptive
algorithms to mine them.

4.4. Effect of K-Truss and Active Prefetching

In Figure 9, we also discuss regions labeled A, B, C, and
D in this figure. At A, the KBP cache HR in the second plot
drops and is lower than AMP, resulting in a sudden increase
of Trigger. By reducing active prefetching in this period,
the total HR of KBP is still higher than AMP. At the same
time, during this period, the HR of PureKTruss continues to
increase rapidly, which shows that the K-Truss structure can
contain both sequential and compound modes and K-Truss
discovery is meaningful. At B, we can see that the trigger
value is 1, and the cache HR of KBP and PureKTruss is
higher than that of AMP during this period, which indicates
that there are more compound sequences during this period,
and the total HR of PureKTruss is even higher than that of
AMP for a short time. At C, the overall HR of PureKTruss
is decreasing, and there is more than 10 KBP decay in the
process of C, which indicates that the pattern originally
recognized has changed. In this period, KBP constantly
adjusts the value of Trigger to make the total HR still keep

174

Figure 9. Effect of K-Truss Discovery And Trigger on Exchange and
the cache size is 128M. The first three plots are same meanings to Figure
8. The last one shows the change of Trigger in KBP as I/O workload
changes. The default value of trigger max is 1000.

rising. This shows that the dynamic adjustment of Trigger
is effective. At D, KBP maximizes the value of Trigger to
reduce active prefetching. As a result, KBP still maintains
an upward trend compared to the decline of AMP. At the
same time, it can be seen that PureKTruss adapts to the
new access pattern through the learning of the C process
and presents a faster rising trend than KBP during D.

4.5. Effect of KBP Decay

In Figure 9, we can see that PureKtruss at C is decreas-
ing continuously and in this process, more than 10 KBP
decay has occurred in total. Finally, PureKtruss masters the
new compound patterns so the overall HR is increasing
in D. In this process, the operation of KBP decay can
help PureKtruss adapt to new patterns more quickly. In
addition, KBP decay can also effectively reduce the memory
overhead.

4.6. Time and Space Overhead

The time cost of KBP mainly depends on compound
pattern recognition, including the construction of EF and
KTruss graph, and the query on KTruss graph. It is not
difficult to know from the literature [10], [11], it takes less
than 0.1ms to dynamically insert edges in the KTruss graph

which is composed of hundreds of thousands of nodes, and
query the max truss subgraph of a certain node. This is short
compared to the I/O response time of the storage device
(usually much greater than 1ms). In contrast, in algorithms
such as C-Miner, it takes a lot of time to mine frequent
subsequences so it cannot support real-time mining.

The space overhead of KBP is mainly EF and Ktruss
graph. EF needs to record a lot of edges, while the occupa-
tion overhead of the Ktruss graph only needs O(n), where
n represents the nodes contained in the truss graph. As SA
Filter is added to recognize sequential access patterns, a
large number of records in EF are reduced. In addition, the
KBP decay algorithm is also dynamically reducing the space
occupied by KBP. In contrast, PureKtruss does not have SA
Filter, so the space overhead will be relatively large. And in
other probability-based methods such as MMs and Nexus-
like, a probability graph needs to be maintained. As new
blocks appear, space occupied gets larger.

5. Related Work

There are several ways to improve storage system cache
performance. The first method is to propose a better cache
replacement strategy (e.g., [14], [25], [26]). The importance
of each block in the cache is evaluated through different
indicators, including recency, frequency, and so on. Each
replacement algorithm replaces the least important one and
tries to keep the most important one in the cache. ARC [14],
LeCar [25], and CACHEUS [26] which is the state-of-the-
art caching replacement scheme are all for proposing more
efficient replacement strategies.

The second method is to identify the access pattern [3]
in the I/O stream, to fetch block from disk to the cache in
advance when the storage system is idle.

The most common is the sequential prefetch strategy
(e.g., [3], [16], [17]). For example, the well-known prefetch-
ing algorithm [16] in the Linux Kernel can efficiently deal
with the pattern from a single sequential stream. Cloud
environments, however, exhibit high levels of concurrency.
This results in I/O workloads where multiple applications
interleave I/O accesses that break the continuity of consec-
utive access patterns. Adaptive algorithms such as AMP [18]
dynamically adjust the number of pages to be prefetched to
prevent both cache pollution and prefetch wastage when the
requests streams are interleaved, while TAP [17] uses a table
to detect sequentiality and track longer history. Sequential
prefetching has been widely deployed and commonly and
widely used [27]. But the patterns covered by them are too
narrow and they work well only for sequential workloads.

To obtain higher prediction accuracy, people begin to
explore block access patterns based on history and propose
general solutions integrating different types of patterns. One
type of general algorithms is based on frequent subsequence
algorithms (e.g., [2], [3], [4]). By using frequent sequence
mining on the request sequence, we can obtain frequent
subsequences which imply that the involved blocks are
frequently accessed together in an access stream. C-Miner
[3] and QuickMine [4] employ this technique but this type of

175

algorithm has a large mining overhead and requires a large
number of historical records for learning, and it is also not
flexible.

Another type of general algorithms is to construct se-
mantic graphs or probability graphs based on data block
access patterns (e.g., [19], [20]). To obtain higher predic-
tion accuracy, the algorithm based on the Markov model
constructs a probability graph at runtime and can make
predictions according to successors with high probabilities
in the graphs. However, when the number of blocks is large,
the space cost of the algorithm is large.

Our KBP efficiently reveals the correlation of blocks,
and it is a highly adaptive online block access pattern mining
strategy that can perform well on any workloads.

6. Conclusion

In this paper, we propose an online scheme, called
KBP, to mine block access patterns for I/O prediction. KBP
employs a novel architecture to coordinate the detection of
different patterns, uses KBP decay to rapidly adapt to new
workload and patterns, and adjusts the trigger step of active
prefetching with online reinforcement learning to provide
flexible prefetching. The experimental results demonstrate
that KBP significantly outperforms traditional schemes.

Acknowledgments

We thanks the reviewers for their insightful feedback
to improve this paper. This work was supported by Na-
tional Natural Science Foundation of China (No.61872392,
61832020), Zhejiang Lab (NO.2021KC0AB04), Key-
Area Research and Development Program of Guangdong
Province (2019B010107001), Guangdong Natural Science
Foundation (2018B030312002), Pearl River S & T Nova
Program of Guangzhou (201906010008) and the Ma-
jor Program of Guangdong Basic and Applied Research
(2019B030302002).

References

[1] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in
Proceedings of the 7th symposium on Operating systems design and
implementation, 2006, pp. 307–320.

[2] C. Zhu, F. Wang, and B. Hou, “Bpp: A realtime block access
pattern mining scheme for i/o prediction,” in Proceedings of the 48th
International Conference on Parallel Processing, 2019, pp. 1–10.

[3] Z. Li, Z. Chen, S. M. Srinivasan, Y. Zhou et al., “C-miner: Mining
block correlations in storage systems.” in FAST, vol. 4, 2004, pp.
173–186.

[4] G. Soundararajan, M. Mihailescu, and C. Amza, “Context-aware
prefetching at the storage server.” in USENIX Annual Technical
Conference, 2008, pp. 377–390.

[5] J. Griffioen and R. Appleton, “Reducing file system latency using a
predictive approach.” in USENIX summer, 1994, pp. 197–207.

[6] S. Yang, K. Srinivasan, K. Udayashankar, S. Krishnan, J. Feng,
Y. Zhang, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Tombolo: Performance enhancements for cloud storage gateways,”
in 2016 32nd Symposium on Mass Storage Systems and Technologies
(MSST). IEEE, 2016, pp. 1–14.

[7] Z. Li, Z. Chen, and Y. Zhou, “Mining block correlations to improve
storage performance,” ACM Transactions on Storage (TOS), vol. 1,
no. 2, pp. 213–245, 2005.

[8] T. M. Wong and J. Wilkes, “My cache or yours?: Making storage
more exclusive,” in USENIX Annual Technical Conference, General
Track, 2002, pp. 161–175.

[9] J. Cohen, “Trusses: Cohesive subgraphs for social network analysis,”
National security agency technical report, vol. 16, no. 3.1, 2008.

[10] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-
truss community in large and dynamic graphs,” in Proceedings of
the 2014 ACM SIGMOD international conference on Management of
data, 2014, pp. 1311–1322.

[11] E. Akbas and P. Zhao, “Truss-based community search: a truss-
equivalence based indexing approach,” Proceedings of the VLDB
Endowment, vol. 10, no. 11, pp. 1298–1309, 2017.

[12] J. Wang and J. Cheng, “Truss decomposition in massive networks,”
arXiv preprint arXiv:1205.6693, 2012.

[13] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Process-
ing Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[14] N. Megiddo and D. S. Modha, “Arc: A self-tuning, low overhead
replacement cache.” in Fast, vol. 3, no. 2003, 2003, pp. 115–130.

[15] X. Yan, J. Han, and R. Afshar, “Clospan: Mining: Closed sequential
patterns in large datasets,” in Proceedings of the 2003 SIAM interna-
tional conference on data mining. SIAM, 2003, pp. 166–177.

[16] F. Wu, “Sequential file prefetching in linux,” in Advanced Operating
Systems and Kernel Applications: Techniques and Technologies. IGI
Global, 2010, pp. 218–261.

[17] M. Li, E. Varki, S. Bhatia, and A. Merchant, “Tap: Table-based
prefetching for storage caches.” in FAST, vol. 8, 2008, pp. 1–16.

[18] B. S. Gill and L. A. D. Bathen, “Amp: Adaptive multi-stream
prefetching in a shared cache.” in FAST, vol. 7, no. 5, 2007, pp.
185–198.

[19] N. Tran and D. A. Reed, “Automatic arima time series modeling
for adaptive i/o prefetching,” IEEE Transactions on parallel and
distributed systems, vol. 15, no. 4, pp. 362–377, 2004.

[20] J. Oly and D. A. Reed, “Markov model prediction of i/o requests
for scientific applications,” in Proceedings of the 16th international
conference on Supercomputing, 2002, pp. 147–155.

[21] Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang, R. Cheng, and
X. Lin, “A survey of community search over big graphs,” The VLDB
Journal, vol. 29, no. 1, pp. 353–392, 2020.

[22] D. J. Foster, A. Rakhlin, and K. Sridharan, “Adaptive online learning,”
arXiv preprint arXiv:1508.05170, 2015.

[23] A. Rakhlin, K. Sridharan, and A. Tewari, “Online learning: Beyond
regret,” in Proceedings of the 24th Annual Conference on Learning
Theory. JMLR Workshop and Conference Proceedings, 2011, pp.
559–594.

[24] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[25] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons, J. Liu, R. Ran-
gaswami, M. Zhao, and G. Narasimhan, “Driving cache replacement
with ml-based lecar,” in 10th {USENIX} Workshop on Hot Topics in
Storage and File Systems (HotStorage 18), 2018.

[26] L. V. Rodriguez, F. Yusuf, S. Lyons, E. Paz, R. Rangaswami, J. Liu,
M. Zhao, and G. Narasimhan, “Learning cache replacement with
{CACHEUS},” in 19th {USENIX} Conference on File and Storage
Technologies ({FAST} 21), 2021, pp. 341–354.

[27] J. Yang, R. Karimi, T. Sæmundsson, A. Wildani, and Y. Vigfusson,
“Mithril: mining sporadic associations for cache prefetching,” in
Proceedings of the 2017 Symposium on Cloud Computing, 2017, pp.
66–79.

176

